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Abstract
Machine learning, especially deep neural networks, has demonstrated remark-

able empirical performances over various benchmarks. A potential next step is to
extend these empirical successes beyond the i.i.d setting to a more practical scenario
where the test data can be collected independently from the training data, while con-
sidered as the same task. In other words, how to train a robust model with data
from one distribution and the test performance will not vary significantly over data
from other different but related distributions. While there are many different works
devoted to solve this problem of learning robust models from various perspectives,
this thesis aims to complement other studies by offering a set of tools for the sit-
uation (and under the hypothesis) that one potential issue behind of the model’s
non-robustness behaviors is the model’s tendency to predict through some features,
which we refer to as superficial features.

We aim to attack the problem of learning robust models with several technical
weapons: we first introduce a line of empirical efforts with numerical successes
on different robustness-related benchmarks; we further aim to formally discuss the
problem by assuming the challenges lie in the tendency of models’ learning of super-
ficial features, which will also lead to a set of principled solutions; we also contribute
engineering efforts to deliver a software that allows human to interact with image
classification models to improve the model’s robustness against superficial features.

In particular, we first hypothesize the underlying challenge of learning robust
model lies in the data, and then validate our hypothesis by investigating the model’s
behavior responding to different copies of the image data.

Building upon our hypothesis, we introduce several new methods for image clas-
sification, countering different specific superficial features in the data. The success
of these methods are validated as the empirical performances over standard domain
generalization image classification tasks.

Further, with the empirical success, we propose to formalize the problem of train-
ing a model over data with superficial features. With the knowledge of the superficial
features, the formalization leads to a proved bound of the generalization error over
the distribution absent of the superficial features. Our formalization can connect to
our proposed methods in the previous section well. Our bound will also inspire a
new method forgoing the knowledge of superficial features with strong empirical
successes.

Finally, to foster the process of building robust models, we introduce a software
with GUI that allows users to inspect image classification model’s decision process
and annotate superficial features exploited by the model.
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Chapter 1

Introduction

1.1 Background & Motivations
In the last decade, machine learning, especially deep neural networks, has accomplished re-
markable empirical successes over various benchmark datasets. These achievements, such as
paralleling human performances in image classification [e.g., 56, 83] or in natural language un-
derstanding [e.g., 115], are so impressive that machine learning, or AI in general, has been widely
considered as the next industrial revolution. However, a potential challenge of the industry transi-
tion is the observed phenomenon that many machine learning models with noteworthy empirical
performances on benchmark datasets often cannot preserve the scores when tested over other
datasets that human consider similar, which may be a major bottleneck of deploying the machine
learning models to facilitate industrial transitions to be AI-driven. This thesis is built upon this
background, aiming of offer a systematic view of training a machine learning model that will be
more resilient to the performance drop when tested in other related datasets after deployed.

Label

Data

Desired
Features

Superficial
Features

correlation

desired associations

what an ERM model learns

Figure 1.1: The main problem studied in this thesis: how to force the model to learn the desired
associations, while the data has superficial correlation and the empirical risk minimizer (ERM)
may learn to predict from both of the desired and superficial features.
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As the issue of learning robust models may cover a variety of topics that have been explored
from various perspectives [e.g., 8, 9, 104, 131, 145], this thesis only studies a slice of the problem
with a narrow focus on the situations where the reason of the non-robust behavior as the result of
model’s learning of “superficial features”, a topic also frequently studied under other terminolo-
gies such as spurious correlation [155], confounding factors [109], and dataset biases [150]. This
main research question is illustrated in Figure 1.1: within a collected dataset, there are desired
features that we hope the models to learn, but there are also some other features that are super-
ficially correlated with the label and can be exploited to reduce prediction errors. An empirical
risk minimization (ERM) model is not designed to have a preference over one set of features over
the other, and may learn superficially correlated features. As a result, an ERM model may see
a performance drop when tested with other similar but different datasets: being similar means
that other datasets share the same association between the label and the desired features with
training data (thus human may consider these datasets similar), and being different means other
datasets do not necessarily share the associations between the label and the superficial features
with training data.

Many related topics have been widely studied over multiple possible superficial correlation
with impressive empirical achievements in various applications, such as computer vision [e.g.,
5, 41, 60, 63, 162, 163, 165], natural language understanding [e.g., 55, 105], and computational
biology [e.g., 161, 164]. With the proliferation of these related works, we notice that some of
these solutions follow a two-step paradigm: first to identify some superficially correlated features
that can lead the models to non-robust behaviors, and then to force the models to ignore (i.e., be
invariant of) these undesired features. However, we also notice that some of these works tend to
reinvent this paradigm to solve each empirical problem.

Therefore, we believe there may be a need of a principled view of these topics. This thesis
will first open with empirical observations and methods development, then attempt to offer some
a formal discussion of the model’s non-robust behaviors as a result of learning the superficial
features, which immediately offers a series of principled solutions to the problem.

1.2 Thesis Contributions Overview
We aim to offer an overview of how to learn robust machine learning models by countering
superficial features, with the following goals in particular:

• Central Hypothesis and Empirical Observations: Chapter 2 defines the scope of this
thesis with the central hypothesis of the challenges of learning robust models. We will first
reiterate the hypothesis listed in Figure 1.1 and discuss some empirical observations to
validate our hypothesis. We will also leverage our empirical observation to explain several
interesting machine learning behaviors.

• Empirical Method Development: Chapter 3 will focus on the empirical side of this prob-
lem. Over the battleground of image classification, the chapter will discuss an armory of
methods over deep neural networks to compete with previous SOTA methods. The main
evaluation metric is cross-domain test accuracy, with a scenario we propose and refer to as
domain generalization without domain IDs. This chapter will also contribute a new dataset
and evaluation metrics developed to test the robustness of an image classification model.
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• Statistical Support and Principled Solutions: Chapter 4 aims to build the theoretical
support of this problem, proving a new generalization bound when the model is trained
over data with superficial correlation. The formalization helps explain the performance
drop of when the models are tested with other dataset without the superficial correlation.
Also, the formalization hopefully can lead to a set of principled solutions for this problem.

• Software Development: Finally, Chapter 5 will contribute a toolbox with graphic user
interface that allows users to examine how an image classification model perceives the
data and to annotate the superficial features the model exploits. With these annotations,
the system can continue to fix the decision process other proposed solutions.

As a disclaimer, we remind the readers that this thesis is built upon the assumption that there
are some features in the data that are not beneficial to the model once learned for generalization
in the robustness setting. We hope to remind the readers that these features may also be useful
in other situations, especially the situations when i.i.d test accuracy is the primary goal, while
our evidence to support the hypothesis (see next section) primarily concerns with the robustness
settings.
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Chapter 2

The Scope of the Problem: the Hypothesis
of Superficial Features

In this chapter, we first define the scope of the problems this thesis is devoted to: we aim to offer
a set of solutions to learn robust models from multiple different perspectives, but limited to the
problems where the main challenges of learning robust models lie in the existence of some other
features that are correlated with the label but not considered useful by a human.

This problem has been widely studied under the terminologies such as bias features [150],
spurious correlations [155], and confounding factors [109], and one of the most popular example
is probably the wolf vs. husky image classification where the snow background features are high
correlated with the labels and exploited by the model for classification [127].

In Section 2.1, we first introduce an interesting observation with the perturbation of the fre-
quency domain of the images. With the observation, we argue that even with simple dataset such
as CIFAR10, the model may not be able to learn the desired patterns of the images, but learn
the superficial features (the high-frequency component of the features) instead. Thus, although
the scope of the problem this thesis focuses on is limited, we believe it is fairly important. With
the ground built in Section 2.1, we continue to use the technique to further explain several other
machine learning phenomenon with the help of superficial features in Section 2.2.

2.1 The Hypothesis and Empirical Validation

Hypothesis: We first reiterate our central hypothesis illustrated in Figure 1.1: within a col-
lected dataset, there are desired features that we hope the models to learn, but there are also
some other features that are spuriously correlated with the label and can be exploited to reduce
prediction errors. An empirical risk minimization (ERM) model is not designed to have a pref-
erence over one set of features over the other, and may learn spuriously correlated features. As a
result, an ERM model may see a performance drop when tested with other similar but different
datasets: being similar means that other datasets share the same association between the label
and the desired features with training data (thus human may consider these datasets similar), and
being different means other datasets do not necessarily share the associations between the label
and the spurious features with training data.

5



Validation: To validate this hypothesis, we demonstrate an example, where we perturb the
frequency domain of test images and feed the perturbed images back to the model. In conclusion,
we demonstrate that there is no explicit tendency that the model will learn the semantic features
from the images (i.e., the model sometimes learns the semantic features and sometimes learns
the superficial features from the data.) Below are the technical details and the results to support
this argument.

Notations: xx,yy denotes a data sample (the image and the corresponding label). fp¨; θq de-
notes a convolutional neural network whose parameters are denoted as θ. We use H to denote a
human model, and as a result, fp¨;Hq denotes how human will classify the data ¨. lp¨, ¨q denotes
a generic loss function (e.g., cross entropy loss). αp¨, ¨q denotes a function evaluating prediction
accuracy (for every sample, this function yields 1.0 if the sample is correctly classified, 0.0 oth-
erwise). dp¨, ¨q denotes a function evaluating the distance between two vectors. Fp¨q denotes the
Fourier transform; thus, F´1p¨q denotes the inverse Fourier transform. We use z to denote the
frequency component of a sample. Therefore, we have z “ Fpxq and x “ F´1pzq.

Notice that Fourier transform or its inverse may introduce complex numbers. In this project,
we simply discard the imaginary part of the results of F´1p¨q to make sure the resulting image
can be fed into CNN as usual.

Methods We decompose the raw data x “ txl,xhu, where xl and xh denote the low-frequency
component (shortened as LFC) and high-frequency component (shortened as HFC) of x. We
have the following four equations:

z “ Fpxq, zl, zh “ tpz; rq,

xl “ F´1
pzlq, xh “ F´1

pzhq,

where tp¨; rq denotes a thresholding function that separates the low and high frequency compo-
nents from z according to a hyperparameter, radius r.

To define tp¨; rq formally, we first consider a grayscale (one channel) image of size nˆnwith
N possible pixel values (in other words, x P N nˆn), then we have z P Cnˆn, where C denotes
the complex number. We use zpi, jq to index the value of z at position pi, jq, and we use ci, cj to
denote the centroid. We have the equation zl, zh “ tpz; rq formally defined as:

zlpi, jq “

#

zpi, jq, if dppi, jq, pci, cjqq ď r

0, otherwise
,

zhpi, jq “

#

0, if dppi, jq, pci, cjqq ď r

zpi, jq, otherwise

We consider dp¨, ¨q in tp¨; rq as the Euclidean distance in this section. If x has more than one
channel, then the procedure operates on every channel of pixels independently.

Results: With the above setup, we can show that sometimes, the model captures the high-
frequency component instead of the semantic features in image classification. For example,
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(a) A sample of frog (b) A sample of mobile (c) A sample of ship (d) A sample of bird

(e) A sample of truck (f) A sample of cat (g) A sample of airplane (h) A sample of ship

Figure 2.1: Eight testing samples selected from CIFAR10 that help explain that CNN can cap-
ture the high-frequency image: the model (ResNet18) correctly predicts the original image (1st

column in each panel) and the high-frequency reconstructed image (3rd column in each panel),
but incorrectly predict the low-frequency reconstructed image (2nd column in each panel). The
prediction confidences are also shown. The frequency components are split with r “ 12. Details
of the experiment will be introduced later.

Figure 2.1 shows the prediction results of eight testing samples from CIFAR10 data set, together
with the prediction results of the high and low-frequency component counterparts. For these
examples, the prediction outcomes are almost entirely determined by the high-frequency compo-
nents of the image, which are barely perceivable to human. On the other hand, the low-frequency
components, which almost look identical to the original image to human, are predicted to some-
thing distinctly different by the model.

Discussion:
Remark 1. With an assumption (referred to as A1) that presumes “only xl is perceivable to
human, but both xl and xh are perceivable to a CNN,” we have:

y :“ fpx;Hq “ fpxl;Hq,

but when a CNN is trained with

arg min
θ

lpfpx; θq,yq,

which is equivalent to

arg min
θ

lpfptxl,xhu; θq,yq,

CNN may learn to exploit xh to minimize the loss. As a result, CNN’s generalization behavior
appears unintuitive to a human.

7



Notice that “CNN may learn to exploit xh” differs from “CNN overfit” because xh can con-
tain more information than sample-specific idiosyncrasy, and these more information can be
generalizable across training, validation, and testing sets, but are just imperceptible to a human.

As Assumption A1 has been demonstrated to hold in some cases (e.g., in Figure 2.1), we
believe Remark 1 can serve as one of the explanations to CNN’s generalization behavior. For
example, the adversarial examples [49, 145] can be generated by perturbing xh; the capacity of
CNN in reducing training error to zero over label shuffled data [178] can be seen as a result of
exploiting xh and overfitting sample-specific idiosyncrasy. Further, we attempt to leverage our
techniques to offer explanations to several other machine learning methods.

2.2 Other Empirical Observations
The above technique also conveniently allows us to analyzer several other machine learning
generalization properties, and it seems many generalization mysteries can be credited to the fact
that there are multiple predictive signals in the data.

2.2.1 Rethinking Data before Rethinking Generalization

Hypothesis Our first aim is to offer some intuitive explanations to the empirical results ob-
served in [178]: neural networks can easily fit label-shuffled data. While we have no doubts that
neural networks are capable of memorizing the data due to its capacity, the interesting question
arises: “if a neural network can easily memorize the data, why it cares to learn the generaliz-
able patterns out of the data, in contrast to directly memorizing everything to reduce the training
loss?”

Within the perspective introduced in Remark 1, our hypothesis is as follows: Despite the same
outcome as a minimization of the training loss, the model considers different level of features in
the two situations:

• In the original label case, the model will first pick up LFC, then gradually pick up the HFC
to achieve higher training accuracy.

• In the shuffled label case, as the association between LFC and the label is erased due
to shuffling, the model has to memorize the images when the LFC and HFC are treated
equally.

Experiments We set up the experiment to test our hypothesis. We use ResNet-18 [57] for
CIFAR10 dataset [82] as the base experiment. The vanilla set-up, which we will use for the rest
of this section, is to run the experiment with 100 epoches with the ADAM optimizer [79] with
learning rate set to be 10´4 and batch size set to be 100, when weights are initialized with Xavier
initialization [46]. Pixels are all normalized to be r0, 1s. All these experiments are repeated in
MNIST [27], FashionMNIST [172], and a subset of ImageNet [26]. These efforts are reported
in the Appendix. We train two models, with the natural label setup and the shuffled label setup,
denote as Mnatural and Mshuffle, respectively; the Mshuffle needs 300 epoches to reach a comparative
training accuracy. To test which part of the information the model picks up, for any x in the

8
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Figure 2.2: Training curves of the original label case (100 epoches) and shuffled label case (300
epoches), together plotted with the low-frequent counterpart of the images. All curves in this
figure are from train samples.

Table 2.1: We test the generalization power of LFC and HFC by training the model with xl or
xh and test on the original test set.

LFC HFC
r train acc. test acc. r train acc. test acc.
4 0.9668 0.6167 4 0.9885 0.2002
8 0.9786 0.7154 8 0.9768 0.092

12 0.9786 0.7516 12 0.9797 0.0997
16 0.9839 0.7714 16 0.9384 0.1281

training set, we generate the low-frequency counterparts xl with r set to 4, 8, 12, 16 respectively.
We test the how the training accuracy changes for these low-frequency data collections along the
training process.

The results are plotted in Figure 2.2. The first message is the Mshuffle takes a longer training
time than Mnatural to reach the same training accuracy (300 epoches vs. 100 epoches), which
suggests that memorizing the samples as an “unnatural” behavior in contrast to learning the
generalizable patterns. By comparing the curves of the low-frequent training samples, we notice
that Mnatural learns more of the low-frequent patterns (i.e., when r is 4 or 8) than Mshuffle. Also,
Mshuffle barely learns any LFC when r “ 4, while on the other hand, even at the first epoch,
Mnatural already learns around 40% of the correct LFC when r “ 4. This disparity suggests that
when Mnatural prefers to pick up the LFC, Mshuffle does not have a preference between LFC vs.
HFC.

If a model can exploit multiple different sets of signals, then why Mnatural prefers to learn LFC
that happens to align well with the human perceptual preference? While there are explanations
suggesting neural networks’ tendency towards simpler functions [124], we conjecture that this
is simply because, since the data sets are organized and annotated by human, the LFC-label
association is more “generalizable” than the one of HFC: picking up LFC-label association will
lead to the steepest descent of the loss surface, especially at the early stage of the training.

To test this conjecture, we repeat the experiment of Mnatural, but instead of the original train
set, we use the xl or xh (normalized to have the standard pixel scale) and test how well the model
can perform on original test set. Table 2.1 suggests that LFC is much more “generalizable” than

9
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BatchSize 250
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Figure 2.3: Plots of accuracy of different epoch sizes along the epoches for train, test data, as
well as LFC and HFC with different radii.

HFC. Thus, it is not surprising if a model first picks up LFC as it leads to the steepest descent of
the loss surface.

A Remaining Question Finally, we want to raise a question: The coincidental alignment be-
tween networks’ preference in LFC and human perceptual preference might be a simple result of
the “survival bias” of the many technologies invented one of the other along the process of climb-
ing the ladder of the state-of-the-art. In other words, the almost-100-year development process
of neural networks functions like a “natural selection” of technologies [159]. The survived ideas
may happen to match the human preferences, otherwise, the ideas may not even be published
due to the incompetence in climbing the ladder.

However, an interesting question will be how well these ladder climbing techniques align
with the human visual preference. We offer to evaluate these techniques with our frequency
tools.

2.2.2 Training Techniques

We continue to reevaluate the techniques that helped in climbing the ladder of state-of-the-art
accuracy. We evaluate these techniques to test the generalization performances towards LFC and
HFC. Many renowned techniques in the ladder of accuracy seem to exploit HFC more or less.

Comparison of Different techniques We test multiple techniques by inspecting the prediction
accuracy over LFC and HFC with multiple choices of r along the training process and plot the
training curves.

Batch Size: We then investigate how the choices of batch size affect the generalization be-
haviors. We plot the results in Figure 2.3. As the figure shows, smaller batch size appears to excel
in improving training and testing accuracy, while bigger batch size seems to stand out in closing
the generalization gap. Also, it seems the generalization gap is closely related to the model’s ten-
dency in capturing HFC: models trained with bigger epoch sizes are more invariant to HFC and
introduce smaller differences in training accuracy and testing accuracy. The observed relation is
intuitive because the smallest generalization gap will be achieved once the model behaves like a
human (because it is the human who annotate the data).

The observation in Figure 2.3 also chips in the discussion in the previous section about “gen-
eralizable” features. Intuitively, with bigger epoch size, the features that can lead to steepest
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Figure 2.4: Plots of accuracy of different techniques along the epoches for train, test data, as well
as LFC and HFC with different radii.

descent of the loss surface are more likely to be the “generalizable” patterns of the data, which
are LFC.

techniques: We also test how different training methods react to LFC and HFC, including
• Dropout [65]: A heuristic that drops weights randomly during training. We apply dropout

on fully-connected layers with p “ 0.5.
• Mix-up [179]: A heuristic that linearly integrate samples and their labels during training.

We apply it with standard hyperparameter α “ 0.5.
• BatchNorm [71]: A method that perform the normalization for each training mini-batch

to accelerate Deep Network training process. It allows us to use a much higher learning
rate and reduce overfitting, similar with Dropout. We apply it with setting scale γ to 1 and
offset β to 0.

• Adversarial Training [104]: A method that augments the data through adversarial examples
generated by a threat model during training. It is widely considered as one of the most
successful adversarial robustness (defense) method. Following the popular choice, we use
PGD with ε “ 8{255 (ε “ 0.03 ) as the threat model.

We illustrate the results in Figure 2.4, where the first panel is the vanilla set-up, and then each
one of the four techniques are tested in the following four panels.

Dropout roughly behaves similarly to the vanilla set-up in our experiments. Mix-up delivers
a similar prediction accuracy, however, it catches much more HFC, which is probably not sur-
prising because the mix-up augmentation does not encourage anything about LFC explicitly, and
the performance gain is likely due to attention towards HFC.

Adversarial training mostly behaves as expected: it reports a lower prediction accuracy,
which is likely due to the trade-off between robustness and accuracy. It also reports a smaller
generalization gap, which is likely as a result of picking up “generalizable” patterns, as verified
by its invariance towards HFC (e.g., r “ 12 or r “ 16). However, adversarial training seems to
be sensitive to the HFC when r “ 4, which is ignored even by the vanilla set-up.

The performance of BatchNorm is notable: compared to the vanilla set-up, BatchNorm picks
more information in both LFC and HFC, especially when r “ 4 and r “ 8. This BatchNorm’s
tendency in capturing HFC is also related to observations that BatchNorm encourages adversarial
vulnerability [37].

Other Tests: We have also tested other techniques or methods by only changing along one
dimension while the rest is fixed the same as the vanilla set-up.

Model architecture: We tested LeNet [88], AlexNet [83], VGG [140], and ResNet [57]. The
ResNet architecture seems advantageous toward previous inventions at different levels: it reports
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Figure 2.5: Comparison of models with vs. without BatchNorm trained with LFC data.

better vanilla test accuracy, smaller generalization gap (difference between training and testing
accuracy), and a weaker tendency in capturing HFC.

Optimizer: We tested SGD, ADAM [79], AdaGrad [33], AdaDelta [177], and RMSprop.
We notice that SGD seems to be the only one suffering from the tendency towards significantly
capturing HFC, while the rest are on par within our experiments.

A hypothesis on Batch Normalization Based on the observation, we hypothesized that one
of BatchNorm’s advantage is, through normalization, to align the distributional disparities of
different predictive signals. For example, HFC usually shows smaller magnitude than LFC, so
a model trained without BatchNorm may not easily pick up these HFC. Therefore, the higher
convergence speed may also be considered as a direct result of capturing different predictive
signals simultaneously.

To verify this hypothesis, we compare the performance of models trained with vs. without
BatchNorm over LFC data and plot the results in Figure 2.5.

As Figure 2.5 shows, when the model is trained with only LFC, BatchNorm does not always
help improve the predictive performance, either tested by original data or by corresponding LFC
data. Also, the smaller the radius is, the less the BatchNorm helps. Also, in our setting, Batch-
Norm does not generalize as well as the vanilla setting, which may raise a question about the
benefit of BatchNorm.

However, BatchNorm still seems to at least boost the convergence of training accuracy. In-
terestingly, the acceleration is the smallest when r “ 4. This observation further aligns with
our hypothesis: if one of BatchNorm’s advantage is to encourage the model to capture different
predictive signals, the performance gain of BatchNorm is the most limited when the model is
trained with LFC when r “ 4.

2.2.3 Adversarial Attack & Defense
As one may notice, our observation of HFC can be directly linked to the phenomenon of “ad-
versarial example”: if the prediction relies on HFC, then perturbation of HFC will significantly
alter the model’s response, but such perturbation may not be observed to human at all, creating
the unintuitive behavior of neural networks.

This section is devoted to study the relationship between adversarial robustness and model’s
tendency in exploiting HFC.
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(a) convoluational kernels of Mnatural (b) convoluational kernels of Madversarial

(c) convoluational kernels of Mnatural(r=1.0) (d) convoluational kernels of
Madversarial(r=1.0)

Figure 2.6: Visualization of convolutional kernels (16 kernels each channel ˆ 3 channels at the
first layer) of models.

Kernel Smoothness vs. Image Frequency As convolutional theorem [14] states, the convo-
lution operation of images is equivalent to the element-wise multiplication of image frequency
domain. Therefore, roughly, if a convolutional kernel has negligible weight at the high-end of
the frequency domain, it will weigh HFC accordingly. This may only apply to the convolutional
kernel at the first layer because the kernels at higher layer do not directly with the data, thus the
relationship is not clear.

Therefore, we argue that, to push the model to ignore the HFC, one can consider to force the
model to learn the convolutional kernels that have only negligible weights at the high-end of the
frequency domain.

Intuitively (from signal processing knowledge), if the convolutional kernel is “smooth”,
which means that there is no dramatics fluctuations between adjacent weights, the corresponding
frequency domain will see a negligible amount of high-frequency signals. The connections have
been mathematically proved [121, 148], but these proved exact relationships are out of the scope
of this section.

Robust Models Have Smooth Kernels To understand the connection between “smoothness”
and adversarial robustness, we visualize the convolutional kernels at the first layer of the mod-
els trained in the vanilla manner (Mnatural) and trained with adversarial training (Madversarial) in
Figure 2.6 (a) and (b).

Comparing Figure 2.6(a) and Figure 2.6(b), we can see that the kernels of Madversarial tend
to show a more smooth pattern, which can be observed by noticing that the adjacent weights
of kernels of Madversarial tend to share the same color. The visualization may not be very clear
because the convolutional kernel is only [3ˆ 3] in ResNet, the message is delivered more clearly
in Appendix with other architecture when the first layer has kernel of the size [5 ˆ 5].

Smoothing Kernels Improves Adversarial Robustness The intuitive argument and empirical
findings directly lead to a question of whether we can improve the adversarial robustness of
models by smoothing the convolutional kernels at the first layer.

Following the discussion, we introduce an extremely simple method that appears to improve
the adversarial robustness against FGSM [49] and PGD [85]. For a convolutional kernel w, we
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Clean FGSM PGD
ε “ 0.03 ε “ 0.06 ε “ 0.09 ε “ 0.03 ε “ 0.06 ε “ 0.09

Mnatural 0.856 0.107 0.069 0.044 0.003 0.002 0.002
Mnatural(ρ “ 0.10) 0.815 0.149 0.105 0.073 0.009 0.002 0.001
Mnatural(ρ “ 0.25) 0.743 0.16 0.11 0.079 0.021 0.005 0.005
Mnatural(ρ “ 0.50) 0.674 0.17 0.11 0.083 0.031 0.016 0.014
Mnatural(ρ “ 1.0) 0.631 0.171 0.14 0.127 0.086 0.078 0.078

Madversarial 0.707 0.435 0.232 0.137 0.403 0.138 0.038
Madversarial(ρ “ 0.10) 0.691 0.412 0.192 0.109 0.379 0.13 0.047
Madversarial(ρ “ 0.25) 0.667 0.385 0.176 0.097 0.352 0.116 0.04
Madversarial(ρ “ 0.50) 0.653 0.365 0.18 0.106 0.334 0.121 0.062
Madversarial(ρ “ 1.0) 0.638 0.356 0.223 0.186 0.337 0.175 0.131

Table 2.2: Prediction performance of models against different adversarial attacks with different
ε.

use i and j to denote its column and row indices, thus wi,j denotes the value at ith row and j th

column. If we use N pi, jq to denote the set of the spatial neighbors of pi, jq, our method is
simply:

wi,j “ wi,j `
ÿ

ph,kqPN pi,jq

ρwh,k, (2.1)

where ρ is a hyperparameter of our method. We fix N pi, jq to have eight neighbors. If pi, jq is
at the edge, then we simply generate the out-of-boundary values by duplicating the values on the
boundary.

In other words, we try to smooth the kernel through simply reducing the adjacent differences
by mixing the adjacent values. The method barely has any computational load, but appears to
improve the adversarial robustness of Mnatural and Madversarial towards FGSM and PGD, even
when Madversarial is trained with PGD as the threat model.

In Figure 2.6, we visualize the convolutional kernels with our method applied to Mnatural and
Madversarial with ρ “ 1.0, denoted as Mnatural(ρ “ 1.0) and Madversarial(ρ “ 1.0), respectively. As
the visualization shows, the resulting kernels tend to show a significantly smoother pattern.

We test the robustness of the models smoothed by our method against FGSM and PGD with
different choices of ε, where the maximum of perturbation is 1.0. As Table 2.2 shows, when our
smoothing method is applied, the performance of clean accuracy directly plunges, but the perfor-
mance of adversarial robustness improves. In particular, our method helps when the perturbation
is allowed to be relatively large. For example, when ε “ 0.09 (roughly 23{255), Mnatural(ρ “ 1.0)
even outperforms Madversarial. In general, our method can easily improve the adversarial robust-
ness of Mnatural, but can only improve upon Madversarial in the case where ε is larger, which is
probably because the Madversarial is trained with PGD(ε “ 0.03) as the threat model.

2.2.4 Similar Properties in Object Detection

We aim to explore more than image classification tasks. We investigate the disparity between
CNN and human in the object detection task. We use RetinaNet [100] with ResNet50 [57] +
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Figure 2.7: Some objects are recognized worse (lower MAP scores) when the experiments are
repeated with low-frequent images. Marked objects are the ones that induce differences (objects
that are recognized with the same MAP in original images and low-frequent images are not
marked).

Figure 2.8: Some objects are recognized better (higher MAP scores) when the experiments are
repeated with low-frequent images. Marked objects are the ones that induce differences (objects
that are recognized with the same MAP in original images and low-frequent images are not
marked).

FPN [99] as the backbone. We train the model with COCO detection train set [98] and perform
inference in its validation set, which includes 5000 images, and achieve an MAP of 35.6%.

Then we choose r “ 128 and maps the images into xl and xh and test with the same model
and get 27.5% MAP with LFC and 10.7% MAP with HFC. The performance drop from 35.6% to
27.5% intrigues us so we further study whether the same drop should be expected from human.

Performance Drop on LFC The performance drop from the x to xl may be expected because
xl may not have the rich information from the original images when HFC are dropped. In
particular, different from image classification, HFC may play a significant role in depicting some
objects, especially the smaller ones.

For example, Figure 2.7 illustrates a few examples, where some objects are recognized worse
in terms of MAP scores when the input images are replaced by its low-frequent counterpart.
This disparity may be expected because the low-frequent images tend to be blurry and some
objects may not be clear to a human either (as the left top image represents). However, we also
notice multiple images with object recognized inferior to the case of the original images when
the low-frequent images maintain a reasonable amount of information.

Performance Gain on LFC However, the disparity gets interesting when we inspect the per-
formance gap in the opposite direction. We identified 1684 images that for each of these images,
the some objects are recognized better (high MAP scores) in comparison to the original images.

The results are shown in Figure 2.8. There seems no apparent reasons why these objects
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are recognized better in low-frequent images, when inspected by human. These observations
strengthen our argument in the perceptual disparity between CNN and human also exist in more
advanced computer vision tasks other than image classification.

2.2.5 Discussion
Are high-frequency components just noises? To answer this question, we experiment with
another frequently used image denoising method: truncated singular value decomposition (SVD)
(e.g., [103]). We first decompose the image with SVD, then instead of separating the image into
LFC and HFC, we separate the image into one reconstructed with dominant singular values
(the ones with bigger absolute values) and one reconstructed with trailing singular values (the
ones with smaller absolute values). With this set-up, we find much fewer images supporting the
story in Figure 2.1. Our observations suggest the signal CNN exploit is more than just random
“noises”.

Other related CNN-analysis works adopting the Fourier transform technique: This
work is inspired by empirical observations showing that a CNN has a tendency in learning su-
perficial statistics [75, 163]. Previous work showed the large generalization gap between images
of different frequency-domain perturbations of the same model [75]. Guo et al. showed that
the adversarial attack is particular effective if the perturbations are constrained in low-frequent
space [52], which was further analyzed to show the low-frequent perturbations are perceivable
to human [137].

2.3 Remarks on the Hypothesis and Its Potential Implications
We investigated how image frequency spectrum affects the generalization behavior of CNN,
leading to multiple interesting explanations of the generalization behaviors of neural networks
from a new perspective: there are multiple signals in the data, and not all of them align with hu-
man’s visual preference. Even in simple dataset such as CIFAR10, we can observe the problems
of superficial features and its impact on learning the models that can align well with the human’s
visual preference. Together with many other works that have credited the lack of robustness to
the data features [63, 70], we hope this chapter can serve as a foundation of the rest the chapters
in discussing the existence of superficial features and the importance in countering them.

16



Chapter 3

Methods to Learn Robust Models by
Countering Superficial Features

This chapter aims to introduce a set of methods to learn robust models by countering superficial
features. These methods are validated by empirical performances in the competition of SOTA
leaderboards, mainly in cross-domain image classification setup.

In particular, we propose to address the problem with the two following perspectives:
• Following the celebrated power of data augmentation, we continue to ask what are the

consistency loss we can use to train a robust model with augmented data. We will also
formalize a new criterion, namely “invariance”, and show that our method encourages the
learning of the invariance (Section 3.2).

• On the other hand, we will demonstrate two techniques that are specifically designed to
predict through image texture and image patch respectively, so that the model can further
leverage these techniques to discard these spurious information (Section 3.3.3 and 3.3.2).

In addition to the methods above, the chapter will also introduce a new dataset, the ImageNet-
Sketch, for cross-domain image classification evaluation (Section 3.4).

The main test bed of these methods is cross-domain image classification, with a setting we
invent and refer to as domain generalization without domain IDs. Then the following sections
will focus on each concrete problem, each with a full-fledged structure of possible additional
background and notations, method introduction, empirical results, and discussions when neces-
sary. ImageNet-Sketch will be used in these experiments but the details of the dataset will be
introduced in the last section.

3.1 Problem Setup
Nowadays, deep neural networks have exhibited remarkable empirical results over various com-
puter vision tasks, yet these impressive performances seem unmet when the models are tested
with the samples in irregular qualities [166] (i.e., out-of-domain data, samples collected from
the distributions that are similar to, but different from the distributions of the training samples).
To account for this discrepancy, technologies have been invented under the domain adaptation
regime [8, 9], where the goal is to train a model with data from the source domain (i.e., the distri-
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bution of the training samples) and get reasonably good predictive performance with data from
the target domain (i.e., the distribution of the testing samples) [22, 167]. Some data from target
domain are usually available during training, either labelled or unlabelled.

Further, as the influence of machine learning increases, the industry starts to demand the
models that can be applied to the domains that are not seen during the training phase. Domain
generalization [114], as an extension of domain adaptation, has been studied as a response. The
main goal here is to train a model from a collection of distributions, and test the predictive
performance in an unseen distribution. This setup does not require data from test domain to be
available during training, but it usually requires the domain identifiers of the training data.

However, we notice that the setup can be improved to be closer to the industry scenario.
Therefore, we extend the problem to ask how to train a model that generalizes to an arbitrary
domain with only the training samples, but not the corresponding domain information, as these
domain information may not be available in the real world [163]. Most of the remaining sections
build upon this set-up and aims to train a model from multiple distributions without domain
information and to empirically perform well on unseen domains.

3.2 Data Augmentation & Consistency Loss

3.2.1 Background
Recent advances in deep learning has delivered remarkable empirical performance over i.i.d test
data, and the community continues to investigate the more challenging and realistic scenario
when models are tested in robustness over non-i.i.d data [e.g., 9, 145]. Recent studies suggest
that one challenge is the model’s tendency in capturing undesired signals [41, 77, 166], thus
combating this tendency may be a key to learning robust models.

To help models discard the undesired signals, augmentation (i.e., diluting the undesired sig-
nals of training samples by applying transformations to existing examples) is often used [e.g.,
47, 62]. It is probably one of the most common methods to improve model’s performance.
Given its wide usage, in this section, we seek to answer the question: how should we train with
augmented samples so that the assistance of augmentation can be taken to the fullest extent to
learn robust and invariant models?

To answer this, we first conduct a range of experiments over image classification benchmarks
to evaluate how popular variants of consistency loss contribute to learning robust and invariant
models. We test for accuracy, robustness, and invariance, for which we propose a new test proce-
dure. Our empirical study favors squared `2 norm. Further, as our experiments may not be able
to exhaust all options, we complement the empirical study with an analysis of the generalization
error bounds of models trained with augmented data and consistency loss. Our theoretical study
indicates the optimal choice to be `1 norm (under assumptions introduced later). With the belief
that the disparity can be explained by the difficulties in passing the gradient of `1 norm in prac-
tice, we believe our formal derivations can support the empirical results well. Our contributions
are:

• With a new invariance test, we argue that while a vanilla training with augmented data
can improve robustness, consistency loss is necessary to regularize the model to learn
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representations invariant to the augmentation function, and squared `2 norm seems to be
the best choice as assessed by a variety of empirical evaluations (§3.2.4).

• On the theoretical end, we formalize a generalization error bound for models trained with
consistency loss and augmented data, studying the worst-case expected risk over unseen
data when samples are allowed to be transformed according to a function in a family
(§3.2.5).

• We test the method we identified (squared `2 norm consistency loss) in multiple robust ma-
chine learning scenarios. We believe the fact a generic approach can compete with methods
specially designed for different scenarios can endorse its empirical strength (§3.2.6).

3.2.2 Related Work & Key Differences

Data augmentation has been used effectively for years. Tracing back to the earliest convolutional
neural networks, we notice that even the LeNet applied on MNIST dataset has been boosted
by mixing the distorted images to the original ones [88]. Later, the rapidly growing machine
learning community has seen a proliferate development of data augmentation techniques (e.g.,
flipping, rotation, blurring etc.) that have helped models climb the ladder of the state-of-the-art
(one may refer to relevant survey [139] for details). Recent advances expanded the conventional
concept of data augmentation and invented multiple new approaches to learn accurate and robust
models [66, 68, 69, 73, 78, 122, 142, 147, 153, 168, 173, 176, 184, 188, 190]. Among these, the
most relevant one to this section will be to generate the samples (with constraint) that maximize
the training loss along training [36], which is widely accepted as adversarial training [104].

While the above works mainly discuss how to generate the augmented samples, in this sec-
tion, we mainly answer the question about how to train the models with augmented samples.
For example, instead of directly mixing augmented samples with the original samples, one can
consider regularizing the representations (or outputs) of original samples and augmented sam-
ples to be close under a distance metric (also known as a consistency loss). Many concrete
ideas have been explored in different contexts. For example, `2 distance and cosine similarities
between internal representations in speech recognition [96], squared `2 distance between logits
[76], or KL divergence between softmax outputs [180] in adversarially robust vision models,
Jensen–Shannon divergence (of three distributions) between embeddings for texture invariant
image classification [62]. These are but a few highlights of the concrete and successful imple-
mentations for different applications out of a huge collection (e.g., [4, 53, 132, 135, 170, 174,
186, 189]), and we can expect methods permuting these three elements (distance metrics, rep-
resentation or outputs, and applications) to be invented. Further, given the popularity of GAN
[48] and domain adversarial neural network [39], one can also expect the distance metric gener-
alizes to a specialized discriminator (i.e. a classifier), which can be intuitively understood as a
calculated (usually maximized) distance measure, Wasserstein-1 metric as an example [3, 51].

Key Differences: With this rich collection of regularizing choices, which one method should
we consider in general? More importantly, do we actually need the regularization at all? These
questions are important for multiple reasons, especially since sometimes consistency loss may
worsen the results [74]. In this section, we first empirically show that consistency loss (especially
squared `2 norm) can help learn robust and invariant models. Further, we also complement our
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empirical study with theoretical analysis connecting robust error bounds with consistency loss.
There are also several previous discussions regarding the detailed understandings of data aug-

mentation [19, 25, 45, 64, 125, 175, 182], among which, [175] is probably the most relevant as it
also defends the usage of the consistency loss. In addition, our work directly connects to invari-
ance, and shows that another advantage of consistency loss is to learn invariant representations.

3.2.3 Accuracy, Robustness, & Invariance
This section discusses the three major evaluation metrics we will use to test consistency loss.
We will first recapitulate the background of accuracy and robustness, and then introduce our
definition of invariance, and our proposed evaluation.

Notations pX,Yq denotes the data, where X P Rnˆp and Y P t0, 1unˆk (one-hot vectors for k
classes). px,yq denotes a sample. fp¨, θq denotes the model, which takes in the data and outputs
the softmax (probabilities of the prediction) and θ denotes the corresponding parameters. gpq
completes the prediction (i.e., mapping softmax to one-hot prediction). lp¨, ¨q denotes a generic
loss function. ap¨q denotes a function used in the data augmentation, i.e., a transformation func-
tion that alters the undesired signals of a sample. a P A, which is the set of transformation
functions of interest. P denotes the distribution of px,yq. rp¨; θq denotes the risk of model θ. p̈
denotes the estimated term ¨.

Accuracy

Since one of the central goals of supervised machine learning study is to improve the prediction
accuracy (or to reduce the prediction error) of a model, accuracy (or error) has widely accepted
definitions. For example, the community studying the statistical property of the error bound
usually focuses on the expected risk defined as

rPppθq “ Epx,yq„PIrgpfpx; pθqq ‰ ys, (3.1)

where Ir¨s is a function that returns 1 if the condition ¨ holds.
In practice, the error is evaluated by replacing P with a hold-out test dataset, and accuracy is

1´ rPppθq.

Robustness

Robustness has been widely studied in the fields of cross-domain robustness [e.g., 9, 114] or
adversarial robustness [e.g., 49, 145]. We follow the latter field and define the robustness as
the worst-case expected risk when the test data is allowed to be transformed by functions in A.
Formally, we study the worst-case error as

rP,Appθq “ Epx,yq„P max
a„A

Irgpfpapxq; pθqq ‰ ys, (3.2)

where we use rP,Appθq to denote the robust error as it will depend on A. In practice, the robust
error is also evaluated by replacing P with a hold-out dataset.
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Invariance

While the robustness metric has been fostering the development of robust machine learning well,
we notice that the metric alone may not fully reveal how the models understand the data. For
example, one incentive to use data augmentation for robust models is to dilute the undesired sig-
nals in the samples, so that the models may focus more on the remaining semantic patterns in the
data. While learning only semantic patterns can lead to a model excelling the robustness evalu-
ation metrics, high robustness score does not necessarily mean the model only learns semantic
patterns and discards undesired signals (as we will show later).

Invariance Metric Therefore, we argue for the need of more dedicate tests to access the
model’s behavior in discarding the undesired signals from data. Intuitively, if the model can
learn a representation invariant to the undesired signals (that one augments data to dilute), it will
map the samples of different undesired signals to the same embedding. We define the following
term to measure invariance:

IP,Appθq “ sup
a1,a2PA

DpQa1pxq,pθ
,Qa2pxq,pθ

q, (3.3)

where Qapxq,pθ denotes the distribution of fpapxq; pθq for px,yq „ P. Dp¨, ¨q is a distance measure
over two distributions. We suggest to use Wasserstein metric as Dp¨, ¨q, considering its favorable
properties (e.g., see practical examples in Figure 1 of [24] or theoretical discussions in [157]).

Invariance Test In practice, we also need to replace P with a hold-out dataset so that the eval-
uation can be performed. In addition, we notice that IP,Appθq, although intuitive, is not convenient
in practice because its values are not bounded. Thus, we reformulate it into the following invari-
ance test procedure, whose final score will be bounded between 0 and 1 (the higher, the better),
thus can be displayed in parallel with accuracy and robust accuracy.

Given a family of transformation functions used in data augmentation A “ ta1pq, a2pq, . . . , atpqu
of t elements, and a collection of samples (from the hold-out dataset) of the same label i, denoted
as Xpiq, the evaluation procedure is as follows. We first generate the transformed copies of Xpiq

with A, resulting in X
piq
a1 ,X

piq
a2 , . . . ,X

piq
at . We combined these copies into a dataset, denoted as

X piq. For every sample x in X piq, we retrieve its t nearest neighbors of other samples in X piq,
and calculate the overlap of the retrieved samples with the transformed copies of x by A, i.e.,
ta1pxq, a2pxq, . . . , atpxqu. The calculated overlap score will be in r0, 1s in general, but since the
identify map is usually in A, this score will usually be in r1{t, 1s.

During the retrieval of nearest neighbors, we consider the distance function of the two sam-
ples as cp¨, ¨q “ dpfp¨; pθq ´ fp¨; pθqq, where pθ is the model we are interested to examine. In the
empirical study later, we consider dp¨, ¨q “ }¨, ¨}1. If we use other distance functions, the reported
values may differ, but we notice that the rank of the methods compared in terms of this test barely
changes.

Finally, we iterate through label i and report the averaged score for all the labels as the final
reported score. A high score indicates the prediction of model pθ is invariant to the augmentation
functions in A.
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3.2.4 Empirical Study

In this section, we conduct experiments to study the relationship between robustness and invari-
ance, as well as how training with consistency regularization can help improve the invariance
score. In short, our empirical study in this section will lead us to the following three major
conclusions:

• High robust accuracy does not necessarily mean a high invariance score, and vice versa.
• Consistency regularization can help improve invariance score.
• Squared `2 norm over logits seems the empirically most favorable option for learning ro-

bust and invariant representations.

Experiment Setup

Our empirical investigation is conducted over two benchmark datasets (MNIST dataset with
LeNet architecture and CIFAR10 dataset with ResNet18 architecture) and three sets of the aug-
mentations.

Augmentation Functions We consider three sets of augmentation functions:
• Texture: we use Fourier transform to perturb the texture of the data by discarding the

high-frequency components of a radius r [166]. The smaller r is, the less high-frequency
components the image has. We consider A “ tapq, a12pq, a10pq, a8pq, a6pqu, where the
subscript denotes the radius r and apq is the identity map. We consider A during test time,
but only apq and a6pq during training.

• Rotation: we rotate the images clockwise r degrees. We consider A “ tapq, a15pq, a30pq,
a45pq, a60pqu, where the subscript denotes the degree of rotation and apq is the identity map.
We consider A during test time, but only apq and a60pq during training.

• Contrast: we create the images depicting the same semantic information, but with differ-
ent scales of the pixels, including the negative color representation. Therefore, we have
A “ tapxq “ x, a1pxq “ x{2, a2pxq “ x{4, a3pxq “ 1 ´ x, a4pxq “ p1 ´ xq{2, a5pxq “
p1´ xq{4, where x stands for the image whose pixel values have been set to be between 0
and 1. We consider A during test time, but only apq and a3pq during training.

Consistency Regularizations We consider the following popular choices of consistency regu-
larization (with u and v denoting two vector embeddings):

L: `1 norm of the vector differences, i.e., }u´ v}1

S: squared `2 norm of the vector differences, i.e., }u´ v}22

C: cosine similarity, i.e., uTv{}u} ¨ }v}

K: KL divergence over a batch of paired embeddings; the second argument are augmented
samples.

W: Wasserstein-1 metric over a batch of paired embeddings, with implementation following
Wasserstein GAN [3, 51]
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D: a vanilla GAN discriminator over a batch of paired embeddings, the one-layer discrimina-
tor is trained to classify samples vs. augmented samples.

We mainly discuss applying the consistency regularization to logits (embeddings prior to the
final softmax function). We have also experimented applying to the final softmax output and the
embeddings one layer prior to logits. Both cases lead to substantially worse results, so we skip
the discussion.

Hyperparameters We first train the baseline models to get reasonably high performance (for
MNIST, we train 100 epoches with learning rate set to be 10´4; for CIFAR10, we train 200
epoches with learning rate initialized to be 10´1 and reduced one magnitude every 50 epoches;
batch sizes in both cases are set to be 128). Then we train other augmented models with the same
learning rate and batch size etc. The regularization weight is searched with 8 choices evenly split
in the logspace from 10´7 to 1. For each method, the reported score is from the weight resulting
in highest robust accuracy. We test with three random seeds.

Evaluation Metrics: We consider the three major evaluation metrics as we discussed in §3.2.3:
A: Accuracy: test accuracy on the original test data.

R: Robustness: the worst accuracy when each sample can be transformed with a P A.

I: Invariance: the metric to test whether the learned representations are invariant to the aug-
mentation functions, as introduced in §3.2.3.

Results and Discussion

Tables 3.1 and 3.2 show the empirical results across the three distribution shifts and the three
evaluation metrics. First of all, no method can dominate across all these evaluations, probably
because of the tradeoff between accuracy and robustness [151, 166, 180]. Similarly, tradeoff
between accuracy and invariance can be expected from the role of the regularization weight:
when the weight is small, the consistency regularization has no effect and the model is primarily
optimized for improving accuracy; when the weight is big, the model is pushed toward a trivial
solution that maps every sample to the same embedding, ignoring other patterns of the data. This
is also the reason that results in Tables 3.1 and 3.2 are selected according to the robust accuracy.

Due to the tradeoffs, it may not be strategic if we only focus on the highest number of each
column. Instead, we suggest to study the three rows of each test case together and compare the
tradeoffs, which is also a reason we reformulate the invariance test in §3.2.3 so that we can have
bounded scores directly comparable to accuracy and robust accuracy.

For example, in the texture panel (f) of Table 3.1, while cosine similarity can outperform
squared `2 norm in accuracy and robustness with a 0.3 and 0.1 margin respectively, it is disadvan-
tageous in invariance with a larger margin (1.0). Similarly, for rotation panel (e) of Table 3.1,
KL-divergence shows the overall highest scores, followed by `1 norm and squared `2 norm. For
contrast panel (o), both `1 norm and squared `2 norm stand out. Overall, experiments in MNIST
suggest the desired choice to be `1 norm or squared `2 norm, and we believe squared `2 norm is
marginally better.
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Table 3.1: Test results on MNIST dataset for different consistency regularizationes over three
evaluation metrics and three distribution shifts. For columns: B denotes Baseline, i.e., the model
does not use any data augmentation; V denotes vanilla augmentation, i.e., the model uses data
augmentation but not consistency regularization; L denotes `1 norm; S denotes squared `2 norm;
C denotes cosine similarity; K denotes KL divergence; W denotes Wasserstein-1 metric; D de-
notes GAN discriminator. For rows: f denotes texture; e denotes rotation; o denotes contrast;
A denotes accuracy; R denotes robustness; I denotes invariance.

B V L S C K W D

f

A 99.2˘0.0 99.2˘0.0 99.0˘0.1 99.1˘0.0 99.4˘0.0 68.7˘41 98.7˘0.1 99.1˘0.1

R 98.3˘0.3 99.0˘0.0 99.0˘0.0 99.0˘0.0 99.1˘0.0 68.7˘41 98.4˘0.1 98.8˘0.1

I 92.4˘0.0 99.2˘0.0 100˘0.0 100˘0.0 99.0˘0.0 76.0˘34 60.7˘2.9 35.0˘6.7

e

A 99.2˘0.0 99.0˘0.1 99.3˘0.0 99.3˘0.0 99.0˘0.0 98.8˘0.0 98.5˘0.4 98.9˘0.0

R 28.9˘0.6 93.6˘0.3 95.2˘0.1 95.1˘0.1 93.5˘0.1 94.5˘0.2 92.3˘0.8 93.2˘0.7

I 20.6˘0.4 58.3˘2.2 66.0˘3.8 65.4˘3.5 29.1˘0.6 71.9˘2.8 48.7˘1.9 39.3˘6.9

o

A 99.2˘0.0 98.9˘0.3 99.4˘0.0 99.4˘0.0 99.2˘0.0 98.9˘0.0 98.7˘0.0 99.1˘0.0

R 26.0˘1.0 95.4˘2.6 96.8˘0.8 97.4˘0.6 97.9˘0.4 88.4˘4.5 87.2˘9.6 97.7˘0.6

I 20.7˘1.1 37.5˘6.9 41.4˘0.3 41.3˘0.4 26.3˘1.1 40.3˘0.9 28.4˘1.7 20.0˘0.1

Table 3.2: Test results on CIFAR10 dataset for different consistency regularizationes over three
evaluation metrics and three distribution shifts. Notations are the same as in Table 3.1.

B V L S C K W D

f

A 88.5˘1.7 86.3˘0.3 82.8˘0.4 82.0˘0.0 86.8˘0.1 84.6˘0.4 86.8˘0.1 86.5˘0.4

R 38.3˘0.7 76.5˘0.0 79.1˘0.2 79.4˘0.1 76.8˘0.1 75.6˘0.1 76.8˘0.1 77.3˘0.2

I 44.7˘0.5 94.1˘0.6 100.0˘0.0 100.0˘0.0 94.2˘1.2 96.7˘1.0 93.4˘0.4 95.4˘0.8

e

A 88.5˘1.7 81.1˘2.3 80.3˘4.7 78.1˘2.2 80.7˘1.8 80.4˘6.8 87.5˘1.6 83.7˘4.0

R 15.3˘1.1 49.0˘0.4 50.7˘2.6 51.1˘1.0 47.0˘0.6 46.6˘4.5 49.4˘0.9 47.7˘1.7

I 47.3˘0.6 54.6˘2.0 40.7˘1.4 55.2˘1.6 55.7˘1.1 55.5˘1.0 55.7˘1.3 54.5˘0.7

o

A 88.5˘1.7 85.2˘4.5 88.8˘1.3 86.9˘2.0 89.6˘0.9 83.4˘3.7 87.2˘2.2 89.7˘0.9

R 54.5˘0.8 77.7˘0.8 83.1˘1.3 83.4˘1.1 80.7˘2.4 79.5˘2.9 82.8˘1.0 80.8˘5.6

I 53.1˘1.6 67.5˘0.1 69.8˘4.8 71.3˘2.3 53.6˘4.7 73.0˘2.2 74.6˘0.8 66.6˘4.3

On the other hand, the experiments in CIFAR10 in Table 3.2 mostly favor `1 norm and
squared `2 norm across the three panels, with good performances from the Wasserstein-1 metric
for rotation (e). Also, we notice that squared `2 norm in general outperforms `1 norm.

Thus, our empirical study recommends squared `2 norm for consistency regularization to
learn robust and invariant models, with `1 norm as a runner-up.

3.2.5 Analytical Support
According to our arguments in §3.2.3, Wasserstein metric is supposed to be the best option
for consistency loss. However, its empirical performance does not stand out. We believe this
disparity is mainly due to the difficulty in calculating the Wasserstein metric in practice.

On the other hand, norm-based consistency losses stand out. We are interested in studying the
properties of these losses. In particular, our aim of this section is to complement the empirical
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study by showing that squared `2 norm (or `1 norm) is a theoretically advantageous choice of
consistency loss (under certain assumptions).

Also, our experiments only use two augmentation functions from A during training, but are
tested with all the functions in A. We also discuss the properties of these two functions and argue
that training with only these two functions can be a good strategy when certain assumptions are
met.

In particular, we will first formalize three properties of data augmentation functions: “dependence-
preservation”, “efficiency”, and “vertices” (§3.2.5), and then we will show:

• When “efficiency” holds, `1 norm can replace the empirical Wasserstein metric to regular-
ize invariance (Proposition 3.2.1 in §3.2.5).

• With the above result and “dependence-preservation”, we can derive a bounded robust
error if all the functions in A are available (Theorem 3.2.2 in §3.2.5).

• With the above result and “vertices”, we can derive a bounded robust error if only two
special functions in A are available (Lemma 3.2.3 in §3.2.5).

Well-behaved Data Transformation Function

Before we proceed to analyze the behaviors of training with data augmentations, we need first
regulate some basic properties of the data transformation functions used. Intuitively, we will
consider the following three properties.
A1: “Dependence-preservation” with two perspectives: Label-wise, the transformation cannot

alter the label of the data, which is a central requirement of almost all the data augmentation
functions in practice. Feature-wise, the transformation will not introduce new dependen-
cies between the samples.

A2: “Efficiency”: the augmentation should only generate new samples of the same label as
minor perturbations of the original one. If a transformation violates this property, there
should exist other simpler transformations that can generate the same target sample.

A3: “Vertices”: There are extreme cases of the transformations. For example, if one needs the
model to be invariant to rotations from 0˝ to 60˝, we consider the vertices to be 0˝ rotation
function (thus identity map) and 60˝ rotation function. In practice, one usually selects the
transformation vertices with intuitions.

These properties are formally introduced as assumptions in Appendix A1.1. We consider A1
an essential assumption for the rest of the analysis. We also conduct tests to see how often A2
and A3 can hold in practice in Appendix A1.1.

Background & Other Technical Assumptions

We first summarize a thread of previous analyses for error bounds in an extremely abstract man-
ner. When the test data and train data are from the same distribution, many previous analyses
can be sketched as:

rPppθq ď prPppθq ` φp|Θ|, n, δq (3.4)
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which states that the expected risk rPppθq can be bounded by the empirical risk prPppθq and a func-
tion of hypothesis space |Θ| and number of samples n; δ accounts for the probability when the
bound holds. φpq is a function of these three terms. Dependent on the details of different analy-
ses, different concrete examples of this generic term will need different assumptions. We use a
generic assumption A4 to denote the assumptions required for each example (Appendix A1.1).

Following our main goal to study how consistency loss and data augmentation help in accu-
racy, robustness, and invariance, our strategy in theoretical analysis is to derive error bounds for
accuracy and robustness, and the error bound directly contains terms to regularize the invariance.
Further, as robustness naturally bounds accuracy (i.e., rPppθq ď rP,Appθq following the definitions
in (3.1) and (3.2) respectively), we only need to study the robust error.

To study the robust error, we need two additional technical assumptions. A5 connects the
worst distribution of expected risk and the worst distribution of the empirical risk, and A6 con-
nects the 0-1 classification error and cross-entropy error. Details of these assumptions are in
Appendix A1.1.

Regularized Worst-case Augmentation

To have a model with small invariance score, the direct approach will be regularizing the empir-
ical counterpart of Eq. (3.3). However, Wasserstein distance is difficult to calculate in practice.
Conveniently, we have the following result that links the `1 norm to the Wasserstein-1 metric in
the context of data augmentation.
Proposition 3.2.1. With A2, for any a P A, we have

W1ppQx,pθ,
pQapxq,pθq “

|pX,Yq|
ÿ

i

||fpxi; pθq ´ fpapxiq; pθq||1,

where pQx,pθ denotes the empirical distribution of fpapxq; pθq for px,yq P pX,Yq.
This result conveniently allows us to use `1 norm to replace Wasserstein metric, integrating

the advantages of Wasserstein metric while avoiding the practical challenges of it.
We can now offer our main technical result:

Theorem 3.2.2. With Assumptions A1, A2, A4, A5, and A6, with probability at least 1 ´ δ, we
have

rP,Apθ ď prPppθq `
ÿ

i

||fpxi; pθq ´ fpx
1
i;
pθq||1

` φp|Θ|, n, δq

and x1 “ apxq, where a “ arg minaPA yJfpapxq; pθq.
This technical result immediately inspires the method to guarantee worst case performance,

as well as to explicitly enforce the concept of invariance. Notice that a “ arg maxaPA yJfpapxq; pθq
is simply selecting the augmentation function maximizing the cross-entropy loss, which we refer
to as worst-case data augmentation. The method is also known as adversarial training [e.g., 104].
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Regularized Training with Vertices

Finally, as A in practice usually has a large number of (and possibly infinite) elements, we may
not always be able to identify the worst case transformation function with reasonable compu-
tational efforts. Our final discussion is to leverage the vertex property of the transformation
function to bound the worst case generalization error:
Lemma 3.2.3. With Assumptions A1-A6, assuming there is a a1pq P A where prPa1 p

pθq “ 1
2

`

prPa` p
pθq`

prPa´ p
pθq
˘

, with probability at least 1´ δ, we have:

rP,Appθq ď
1

2

`

prPa` p
pθq ` prPa´ p

pθq
˘

`
ÿ

i

||fpa`pxiq; pθq ´ fpa
´
px1q; pθq||1

` φp|Θ|, n, δq,

where a`pq and a´pq are defined in A3.
This result corresponds to the method that can be optimized conveniently without searching

for the worst-case transformations. However, the method requires a good domain knowledge of
the vertices of the transformation functions.

Thus, our theoretical discussions have supported our empirical findings in §3.2.4, with a dis-
parity that our analytical result suggests the usage as `1 norm while our empirical study suggests
the usage of squared `2 norm. We conjecture the disparity is mainly caused by the difficulty in
passing the gradient of `1 norm in practice.

3.2.6 Experiments with Advanced Methods
We continue to test the methods we identified in comparison to more advanced methods. Al-
though we argued for the value of invariance in this section, for a fair comparison, we will test
the performances evaluated by the metrics the previous methods are designed for. Our method
will use the same generic approach and the same augmentation functions as in previous empirical
study, although these functions are not necessarily part of the distribution shift we test now. In
summary, our method can outperform (or be on par with) these SOTA techniques in the robust-
ness metric they are designed for (§3.2.6). In addition, we run a side test to show that our method
can also improve accuracy (§3.2.6).

Methods

§3.2.4 and §3.2.5 lead us to test the following two methods:
• RVA (regularized vertex augmentation): using squared `2 norm as consistency regulariza-

tion over logits between the original samples and the augmented samples of a fixed vertex
transformation function (original samples are considered as from another vertex).

• RWA (regularized worst-case augmentation): using squared `2 norm as consistency regu-
larization over logits between the original samples and the worst-case augmented samples
identified at each iteration. Worst-case samples are the function with the maximum loss
when we iterate through all the transformation functions.
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Table 3.3: Comparison to advanced rotation-invariant models. We report the accuracy on the test
sets rotated. “main” means the resulting images are highly likely to be semantically the same
as the original ones. “all” means the average accuracy of all rotations. The underlined scores
show that data augmentation and consistency regularization can help a vanilla model to compete
with advanced methods. The bold scores (highest at each row) show that data augmentation and
consistency regularization can further improve the advanced methods.

ResNet GC ST ETN
Base RVA RWA Base RVA RWA Base RVA RWA Base RVA RWA

main 45.4 66.5 71.1 38.5 72.2 73.8 45.9 58.3 62.9 56.9 65.1 57.7
all 31.2 48.1 52.8 26.7 54.4 55.0 32.1 40.2 42.7 39.5 52.6 46.1

Robustness

Rotation We compare our results with rotation-invariant models, mainly Spatial Transformer
(ST) [72], Group Convolution (GC) [21], and Equivariant Transformer Network (ETN) [146].
We also tried to run CGNet [81], but the method does not seem to scale to the CIFAR10 and
ResNet level. All these methods are tested with ResNet34 following popular settings in the com-
munity. The results are in Table 3.3. We test the models every 15˝ rotation from 0˝ rotation to
345˝ rotation. Augmentation related methods are using the A of “rotation” in synthetic exper-
iments, so the testing scenario goes beyond what the augmentation methods have seen during
training.

We report two summary results in Table 3.3. “main” means the average prediction accuracy
from images rotated from 300˝ to 60˝ (passing 0˝), when the resulting images are highly likely
to preserve the class label. “all” means the average accuracy of all rotations.

Our results can be interpreted with two perspectives. First, by comparing all the columns in
the first panel to the first column of the other three panels, data augmentation and consistency
regularization can boost a vanilla model to outperform other advanced techniques. One the
other hand, by comparing the columns within each panel, data augmentation and consistency
regularization can further improve the performances of these techniques.

Interestingly, the baseline model with our generic approach (RWA in the first panel) can
almost compete with the advanced methods even when these methods also use augmentation
and consistency regularization (RWA in GC panel). We believe this observation strongly indi-
cates the potential of this simple augmentation and regularization method to match the advanced
methods considering the margin improved by the method.

In summary, RWA can boost the vanilla model to outperform SOTA methods, and data aug-
mentation and squared `2 consistency regularization can further improve the performances when
plugged onto SOTA methods. The detailed result of each rotation are reported in Table A3 in
Appendix.

Texture & Contrast We follow [5] and compare the models for a 9 super-class ImageNet
classification [70] with class balanced strategies. Also, we follow [5] to report standard ac-
curacy (Acc.), weighted accuracy (WAcc.), a scenario where samples with unusual texture are
weighted more, and accuracy over ImageNet-A [61], a collection of failure cases for most Im-
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Table 3.4: Comparison to advanced methods on
9 super-class ImageNet classification with different
distribution shifts.

Acc. WAcc. ImageNet-A ImageNet-S
Base 90.8 88.8 24.9 41.1
SIN 88.4 86.6 24.6 40.5
LM 67.9 65.9 18.8 36.8

RUBi 90.5 88.6 27.7 42.3
RB 91.9 90.5 29.6 41.8
RVA 92.2 91.2 28.0 42.5
RWA 92.8 91.6 28.8 43.2

Table 3.5: The generic methods can also
improve standard accuracy.

Top-1 Top-5

ResNet18
Base 75.61 93.05
RVA 76.57 93.38
RWA 77.21 93.84

ResNet50
Base 77.39 93.96
RVA 77.81 94.27
RWA 78.24 94.42

ResNet101
Base 77.78 94.39
RVA 78.18 94.51
RWA 78.66 94.87

ageNet trained models. Additionally, we also report the performance over ImageNet-Sketch
[162], an independently collected ImageNet test set with only sketch images. As [5] mainly aims
to overcome the texture bias, we also use our texture-wise functions in §3.2.4 for augmentation.
However, there is no direct connections between these functions and the distribution shift of the
test samples. Also, we believe the distribution shifts here, especially the one introduced by our
newly added ImageNet-Sketch, are more than texture, and also correspond to the contrast case
of our study.

Following [5], the base network is ResNet, and we compare with the vanilla network (Base),
and several methods designed for this task: including StylisedIN (SIN) [41], LearnedMixin (LM)
[20], RUBi (RUBi) [16] and ReBias (RB) [5]. Results are in Table 3.4.

The results favor our generic method in most cases. RVA outperforms other methods in stan-
dard accuracy, weighted accuracy, and ImageNet-Sketch, and is shy from ReBias on ImageNet-
A. RWA shows the same pattern as that of RVA, and further outperforms RVA. Overall, these
results validate the empirical strength of data augmentation (even when the augmentation is not
designed for the task) and squared `2 norm consistency regularization for learning robust models.

Accuracy

Further, we follow the widely-accepted CIFAR100 test pipeline and test the performances of
different architectures of the ResNet family. The results are reported in Table 3.5, where Base
stands for the baseline model with all default accuracy boosting techniques enabled.

For both top-1 and top-5 accuracies and across the three ResNet architectures, our techniques
can help improve the accuracy. In addition, our techniques help bridge the gap of different
architectures within the ResNet family: for example, RWA helps ResNet50 to outperform vanilla
ResNet101.

3.2.7 Discussion

Data augmentation has benefited the development of machine learning models substantially.
Given its widely usage, in this section, we seek to answer that how to train with augmented
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data so that the assistance of augmentation can be taken to the fullest extent. To answer this,
we first defined another dimension called invariance and conducted a line of empirical study to
show that norm-based consistency loss can help learn robust and invariant models. Further, we
complement our observations with formal derivations with bounded generalization errors. With
progressively more specific assumptions, we identified progressively simpler methods that can
bound the worst case risk. We summarize the main take-home messages below:

• Regularizing a norm distance between the logits of the originals samples and the logits of
the augmented samples enjoys several merits: the trained model tend to have good worst
case performance, and can learn the concept of invariance. Although our theory suggests
`1 norm, but we recommend squared `2 norm in practice considering the difficulties of
passing the gradient of `1 norm in backpropagation.

• With the vertex assumption held (it usually requires domain knowledge to choose the ver-
tex functions), one can use “regularized training with vertices” (RVA) method and get
good empirical performance in both accuracy and invariance, and the method is at the
same complexity order of vanilla training without data augmentation. When we do not
have the domain knowledge (thus are not confident in the vertex assumption), we rec-
ommend “regularized worst-case augmentation” (RWA), which has the best performance
across most cases, but requires extra computations to identify the worst-case augmented
samples at each iteration.

3.3 Regularization by Learning through Superficial Features

3.3.1 Background and Related Work
Imagine training an image classifier to recognize facial expressions. In the training data, while
all images labeled “smile” may actually depict smiling people, the “smile” label might also be
correlated with other aspects of the image. For example, people might tend to smile more often
while outdoors, and to frown more in airports. In the future, we might encounter photographs
with previously unseen backgrounds, and thus we prefer models that rely as little as possible on
the superficial signal.

The problem of learning classifiers robust to distribution shift, commonly called Domain
Adaptation (DA), has a rich history. Under restrictive assumptions, such as covariate shift [50,
138], and label shift (also known as target shift or prior probability shift) [101, 134, 144, 181],
principled methods exist for estimating the shifts and retraining under the importance-weighted
ERM framework. Other sections bound worst-case performance under bounded shifts as mea-
sured by divergence measures on the train v.s. test distributions [9, 67, 108].

While many impossibility results for DA have been proven [10], humans nevertheless exhibit
a remarkable ability to function out-of-sample, even when confronting dramatic distribution shift.
Few would doubt that given photographs of smiling and frowning astronauts on the Martian
plains, we could (mostly) agree upon the correct labels.

While we lack a mathematical description of how precisely humans are able to generalize so
easily out-of-sample, we can often point to certain classes of perturbations that should not effect
the semantics of an image. For example for many tasks, we know that the background should
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not influence the predictions made about an image. Similarly, other superficial statistics of the
data, such as textures or subtle coloring changes should not matter. The essential assumption
of this section is that by making our model depend less on known superficial aspects, we can
push the model to rely more on the difference that makes a difference. This section focuses on
visual applications, and we focus on high-frequency textural information as the relevant notion
of superficial statistics that we do not want our model to depend upon.

Domain generalization (DG) [114] is a variation on DA, where samples from the target do-
main are not available during training. In reality, data-sets may contain data cobbled together
from many sources but where those sources are not labeled. For example, a common assumption
used to be that there is one and only one distribution for each dataset collected, but Wang et al.
[160] noticed that in video sentiment analysis, the data sources varied considerably even within
the same dataset due to heterogeneous data sources and collection practices.

Domain adaptation [9, 15], and (more broadly) transfer learning have been studied for decades,
with antecedents in the classic econometrics work on sample selection bias [58] and choice mod-
els [107]. For a general primer, we refer the reader to these extensive reviews [22, 169].

Domain generalization [114] is relatively new, but has also been studied extensively: covering
a wide spectrum of techniques from kernel methods [34, 95, 114, 117] to more recent deep
learning end-to-end methods, where the methods mostly fall into two categories: reducing the
inter-domain differences of representations through adversarial (or similar) techniques [17, 44,
94, 112, 160], or building an ensemble of one-for-each-domain deep models and then fusing
representations together [31, 106]. Meta-learning techniques are also explored [92]. Related
studies are also conducted under the name “zero shot domain adaptation” e.g. [84].

3.3.2 Neural Gray-level Co-occurrence Matrix

In this section, we introduce our main technical contributions. We will first introduce the our
new differentiable neural building block, NGLCM that is designed to capture textural but not
semantic information from images, and then introduce our technique for excluding the textural
information.

Neural Gray-Level Co-occurrence Matrix for Superficial Information Our goal is to design
a neural building block that 1) has enough capacity to extract the textural information from an
image, 2) is not capable of extracting semantic information. We consulted some classic computer
vision techniques for inspiration and extensive experimental evidence, suggested that gray-level
co-occurrence matrix (GLCM) [54, 86] may suit our goal. The idea of GLCM is to count the
number of pixel pairs under a certain direction (common direction choices are 0 degree, 45
degree, 90 degree, and 135 degree). For example, for an image A P Nmˆm, where N denotes
the set of all possible pixel values. The GLCM of A under the direction to 0 degree (horizontally
right) will be a |N | ˆ |N | matrix (denoted by G) defined as following:

Gk,l “

m´1
ÿ

i“0

m
ÿ

j“0

IpAi,j “ kqIpAi`1,j “ lq (3.5)
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Figure 3.1: Introduction of Neural Gray-level Co-occurrence Matrix (NGLCM) and HEX.

where |N | stands for the cardinality of N , Ip¨q is an identity function, i, j are indices of A, and
k, l are pixel values of A as well as indices of G.

We design a new neural network building block that resembles GLCM but whose parameters
are differentiable, having (sub)gradient everywhere, and thus are tunable through backpropaga-
tion.

We first flatten A into a row vector a P N 1ˆm2 . The first observation we made is that the
counting of pixel pairs (pk, pl) in Equation 3.5 is equivalent to counting the pairs (pk, ∆p), where
∆p “ pk ´ pl. Therefore, we first generate a vector d by multiplying a with a matrix D, where
D is designed according to the direction of GLCM. For example, D in the 0 degree case will be
a m2 ˆm2 matrix D such that Di,i “ 1, Di,i`1 “ ´1, and 0 elsewhere.

To count the elements in a and d with a differentiable operation, we introduce two sets of
parameters φa P R|N |ˆ1 and φb P R|N |ˆ1 as the tunable parameter for this building block, so
that:

G “ spa;φaqs
T
pd;φbq (3.6)

where spq is a thresholding function defined as:

spa;φaq “ minpmaxpaa φa, 0q, 1q

where a denotes the minus operation with the broadcasting mechanism, yielding both spa;φaq
and spd;φbq as |N | ˆm2 matrices. As a result, G is a |N | ˆ |N | matrix.

The design rationale is that, with an extra constrain that requires φ to have only unique values
in the set of tn ´ ε|n P N u, where ε is a small number, G in Equation 3.6 will be equivalent to
the GLCM extracted with old counting techniques, subject to permutation and scale. Also, all
the operations used in the construction of G have (sub)gradient and therefore all the parameters
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are tunable with backpropagation. In practice, we drop the extra constraint on φ for simplicity in
computation.

Our preliminary experiments suggested that for our purposes it is sufficient to first map stan-
dard images with 256 pixel levels to images with 16 pixel levels, which can reduce to the number
of parameters of NGLCM (|N | = 16).

HEX We first introduce notation to represent the neural network. We use xX, yy to denote
a dataset of inputs X and corresponding labels y. We use hp¨; θq and fp¨; ξq to the bottom
and top components of a neural network. A conventional neural network architecture will use
fphpX; θq; ξq to generate a corresponding result Fi and then calculate the argmax to yield the
prediction label.

Besides conventional fphpX; θq; ξq, we introduce another architecture

gpX;φq “ σmppspa;φaqs
T
pd;φbqqWm ` bmq

where φ “ tφa, φb,Wm, bmu, spa;φaqs
T pd;φbq is introduced in previous section, tWm, bm, σmu

(weights, biases, and activation function) form a standard MLP.
With the introduction of gp¨;φq, the final classification layer turns into f rhpX; θq, gpX;φqs; ξq

(where we use r¨, ¨s to denote concatenation).
Now, with the representation learned through raw data by hp¨; θq and textural representation

learned by gp¨;φq, the next question is to force fp¨; ξq to predict with transformed representation
from hp¨; θq that in some sense independent of the superficial representation captured by gp¨;φq.

To illustrate following ideas, we first introduce three different outputs from the final layer:

FA “ fprhpX; θq, gpX;φqs; ξq

FG “ fpr0, gpX;φqs; ξq

FP “ fprhpX; θq,0s; ξq

(3.7)

where FA, FG, and FP stands for the results from both representations (concatenated), only the
textural information (prepended with the 0 vector), and only the raw data (concatenated wit hthe
0 vecotr), respectively. 0 stands for a padding matrix with all the zeros, whose shape can be
inferred by context.

Several heuristics have been proposed to force a network to “forget” some part of a represen-
tation, such as adversarial training [39] or information-theoretic regularization [113]. In similar
spirit, our first proposed solution is to adopt the reverse gradient idea [39] to train FP to be
predictive for the semantic labels y while forcing the FP to be invariant to FG. Later, we refer
to this method as ADV. When we use a multilayer perceptron (MLP) to try to predict gpX;φq
from hpX; θq and update the primary model to fool the MLP via reverse gradient, we refer to the
model as ADVE.

Additionally, we introduce a simple alternative. Our idea lies in the fact that, in an affine
space, to find a transformation of representation A that is least explainable by some other repre-
sentation B, a straightforward method will be projecting A with a projection matrix constructed
by B (sometimes referred as residual maker matrix.). To utilize this linear property, we choose
to work on the space of F generated by fp¨; ξq right before the final argmax function.
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Projecting FA with

FL “ pI ´ FGpF
T
GFGq

´1F T
G qFA (3.8)

will yield FL for parameter tuning. All the parameters ξ, φ, θ can be trained simultaneously. In
testing time, FP is used.

Two alternative forms of our algorithm are also worth mentioning: 1) During training, one
can tune an extra hyperparameter (λ) through

lparg maxFL, yq ` λlparg maxFG, yq

to ensure that the NGLCM component is learning superficial representations that are related
to the present task where lp¨, ¨q is a generic loss function. 2) During testing, one can use FL,
although this requires evaluating the NGLCM component at prediction time and thus is slightly
slower. We experimented with these three forms with our synthetic datasets and did not observe
significant differences in performance and thus we adopt the fastest method as the main one.

Empirically, we also notice that it is helpful to make sure the textural representation gpX;φq
and raw data representation hpX; θq are of the same scale for HEX to work, so we column-wise
normalize these two representations in every minibatch.

Experiments To show the effectiveness of our proposed method, we conduct range of experi-
ments, evaluating HEX’s resilience against dataset shift. To form intuition, we first examine the
NGLCM and HEX separately with two basic testings, then we evaluate on two synthetic datasets,
on in which dataset shift is introduced at the semantic level and another at the raw feature level,
respectively. We finally evaluate other two standard domain generalization datasets to compare
with the state-of-the-art. All these models are trained with ADAM [79].

We conducted ablation tests on our two synthetic datasets with two cases 1) replacing NGLCM
with one-layer MLP (denoted as M), 2) not using HEX/ADV (training the network with FA
(Equation 3.7) instead of FL (Equation 3.8)) (denoted as N). We also experimented with the two
alternative forms of HEX: 1) with FG in the loss and λ “ 1 (referred as HEX-ADV), 2) predict-
ing with FL (referred as HEX-ALL). We also compare with the popular DG methods (DANN
[39]) and another method called information-dropout [1].

NGLCM Only Extracts Textural Information To show that the NGLCM only extracts textural
information, we trained the network with a mixture of four digit recognition data sets: MNIST
[88], SVHN [116], MNIST-M [38], and USPS [28]. We compared NGLCM with a single layer
of MLP. The parameters are trained to minimize prediction risk of digits (instead of domain).
We extracted the representations of NGLCM and MLP and used these representations as fea-
tures to test the five-fold cross-validated Naı̈ve Bayes classifier’s accuracy of predicting digit
and domain. With two choices of learning rates, we repeated this for every epoch through 100
epochs of training and reported the mean and standard deviation over 100 epochs in Table 3.6:
while MLP and NGLCM perform comparably well in extracting textural information, NGLCM
is significantly less useful for recognizing the semantic label.

HEX projection To test the effectiveness of HEX, we used the extracted SURF [7] features
(800 dimension) and GLCM [86] features (256 dimension) from office data set [130] (31 classes).
We built a two-layer MLP (800 ˆ 256, and 256 ˆ 31) as baseline that only predicts with SURF
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Random MLP (1e-2) NGLCM (1e-2) MLP (1e-4) NGLCM (1e-4)
Domain 0.25 0.686˘0.020 0.738˘0.018 0.750˘0.054 0.687˘0.029
Label 0.1 0.447˘0.039 0.161˘0.008 0.534˘0.022 0.142˘0.023

Table 3.6: Accuracy of domain classification and digit classification

Train Test Baseline HEX HEX-ADV HEX-ALL
A, W D 0.405˘0.016 0.343˘0.030 0.343˘0.030 0.216˘0.119
D, W A 0.112˘0.008 0.147˘0.004 0.147˘0.004 0.055˘0.004
A, D W 0.400˘0.016 0.378˘0.034 0.378˘0.034 0.151˘0.008

Table 3.7: Accuracy on Office data set with extracted features. The Baseline refers to MLP
with SURF features. The HEX methods refer to adding another MLP with features extracted by
traditional GLCM methods. Because D and W are similar domains (same obejcts even share
the same background), we believe these results favor the HEX method (see Section 3.3.2) for
duscussion).

features. This architecture and corresponding learning rate are picked to make sure the baseline
can converge to a relatively high prediction performance. Then we plugged in the GLCM part
with an extra first-layer network 256 ˆ 32 and the second layer of the baseline is extended to
288 ˆ 31 to take in the information from GLCM. Then we train the network again with HEX
with the same learning rate.

The Office data set has three different subsets: Webcam (W ), Amazon (A), and DSLR (D).
We trained and validated the model on a mixture of two and tested on the third one. We ran
five experiments and reported the averaged accuracy with standard deviation in Table 3.7. These
performances are not comparable to the state-of-the-art because they are based on features. At
first glance, one may frown upon on the performance of HEX because out of three configurations,
HEX only outperforms the baseline in the setting {W , D} Ñ A. However, a closer look into
the datasets gives some promising indications for HEX: we notice W and D are distributed
similarly in the sense that objects have similar backgrounds, while A is distributed distinctly.
Therefore, if we assume that there are two classifiers C1 and C2: C1 can classify objects based
on object feature and background feature while C2 can only classify objects based on object
feature ignoring background feature. C2 will only perform better than C1 in {W , D}Ñ A case,
and will perform worse than C2 in the other two cases, which is exactly what we observe with
HEX.

Facial Expression Classification with Nuisance Background We generated a synthetic data set
extending the Facial Expression Research Group Database [2], which is a dataset of six animated
individuals expressing seven different sentiments. For each pair of individual and sentiment,
there are over 1000 images. To introduce the data shift, we attach seven different backgrounds
to these images. In the training set (50% of the data) and validation set (30% of the data), the
background is correlated with the sentiment label with a correlation of ρ; in testing set (the rest
20% of the data), the background is independent of the sentiment label. In the experiment, we
format the resulting images to 28ˆ 28 grayscale images.

We run the experiments first with the baseline CNN (two convolutional layers and two fully
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Figure 3.2: Averaged testing accuracy and standard deviation of five repeated experiments with
different correlation level on sentiment with nuisance background data. Notations: baseline
CNN (B), Ablation Tests (M (replacing NGLCM with MLP) and N (training without HEX pro-
jection)), ADVE (E), ADV (A), HEX (H), HEX-ADV (V), HEX-ALL (L), DANN (G), and
InfoDropout (I).

connected layers) to tune for hyperparameters. We chose to run 100 epochs with learning rate
5e-4 because this is when the CNN can converge for all these 10 synthetic datasets. We then
tested other methods with the same learning rate. The results are shown in Figure 3.2 with
testing accuracy and standard deviation from five repeated experiments. Testing accuracy is
reported by the model with the highest validation score. In the figure, we compare baseline CNN
(B), Ablation Tests (M and N), ADV (A), HEX (H), DANN (G), and InfoDropout (I). Most
these methods perform well when ρ is small (when testing distributions are relatively similar
to training distribution). As ρ increases, most methods’ performances decrease, but Adv and
HEX behave relatively stable across these ten correlation settings. We also notice that, as the
correlation becomes stronger, M deteriorates at a faster pace than other methods. Intuitively, we
believe this is because the MLP learns both from the semantic signal together with superficial
signal, leading to inferior performance when HEX projects this signal out. We also notice that
ADV and HEX improve the speed of convergence.

Mitigating the Tendency of Surface Statistical Regularities in MNIST As [75] observed,
CNNs have a tendency to learn the surface statistical regularities: the generalization of CNNs
is partially due to the abstraction of high level semantics of an image, and partially due to surface
statistical regularities. Here, we demonstrate the ability of HEX to overcome such tendencies.
We followed the radial and random Fourier filtering introduced in [75] to attach the surface sta-
tistical regularities into the images in MNIST. There are three different regularities altogether
(radial kernel, random kernel, and original image). We attached two of these into training and
validation images and the remaining one into testing images. We also adopted two strategies in
attaching surface patterns to training/validation images: 1) independently: the pattern is indepen-
dent of the digit, and 2) dependently: images of digit 0-4 have one pattern while images of digit
5-9 have the other pattern.

We used the same learning rate scheduling strategy as in the previous experiment. The results
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Figure 3.3: Averaged testing accuracy and standard deviation of five repeated experiments with
different strategies of attaching patterns to MNIST data. Notations: baseline CNN (B), Ablation
Tests (M (replacing NGLCM with MLP) and N (training without HEX projection)), ADVE (E),
ADV (A), HEX (H), HEX-ADV (V), HEX-ALL (L), DANN (G), and InfoDropout (I).

Test CAE MTAE CCSA DANN Fusion LabelGrad CrossGrad HEX ADV
M0degree 72.1 82.5 84.6 86.7 85.6 89.7 88.3 90.1 89.9
M15 95.3 96.3 95.6 98 95.0 97.8 98.6 98.9 98.6
M30 92.6 93.4 94.6 97.8 95.6 98.0 98.0 98.9 98.8
M45 81.5 78.6 82.9 97.4 95.5 97.1 97.7 98.8 98.7
M60 92.7 94.2 94.8 96.9 95.9 96.6 97.7 98.3 98.6
M75 79.3 80.5 82.1 89.1 84.3 92.1 91.4 90.0 90.4
Avg 85.6 87.6 89.1 94.3 92.0 95.2 95.3 95.8 95.2

Table 3.8: Accuracy on MNIST-Rotation data set

are shown in Figure 3.3. Figure legends are the same as previous. Interestingly, NGLCM and
HEX contribute differently across these cases. When the patterns are attached independently, M
performs the best overall, but when the patterns are attached dependently, N and HEX perform
the best overall. In the most challenging case of these experiments (random kerneled as testing,
pattern attached dependently), HEX shows a clear advantage. Also, HEX behaves relatively
more stable overall.

MNIST with Rotation as Domain We continue to compare HEX with other state-of-the-art
DG methods (that use distribution labels) on popular DG data sets. We experimented with the
MNIST-rotation data set, on which many DG methods have been tested. The images are rotated
with different degrees to create different domains. We followed the approach introduced by [44].
To reiterate: we randomly sampled a set M of 1000 images out of MNIST (100 for each label).
Then we rotated the images in M counter-clockwise with different degrees to create data in other
domains, denoted by M15, M30, M45, M60, M75. With the original set, denoted by M0degree,
there are six domains altogether.

We compared the performance of HEX/ADV with several methods tested on this data includ-
ing CAE [128], MTAE [44], CCSA [112], DANN [39], Fusion [106], LabelGrad, and CrossGrad
[136]. The results are shown in Table 3.8: HEX is only inferior to previous methods in one case
and leads the average performance overall.

PACS: Generalization in Photo, Art, Cartoon, and Sketch Finally, we tested on the PACS data
set [91], which consists of collections of images of seven different objects over four domains,
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Test Domain AlexNet DSN L-CNN MLDG Fusion HEX ADV
Art 63.3 61.1 62.8 63.6 64.1 66.8 64.9

Cartoon 63.1 66.5 66.9 63.4 66.8 69.7 69.6
Photo 87.7 83.2 89.5 87.8 90.2 87.9 88.2
Sketch 54 58.5 57.5 54.9 60.1 56.3 55.5

Average 67.0 67.3 69.2 67.4 70.3 70.2 69.5

Table 3.9: Testing Accuracy on PACS

including photo, art painting, cartoon, and sketch.
Following [91], we used AlexNet as baseline method and built HEX upon it. We met some

optimization difficulties in directly training AlexNet on PACS data set with HEX, so we used
a heuristic training approach: we first fine-tuned the AlexNet pretrained on ImageNet with
PACS data of training domains without plugging in NGLCM and HEX, then we used HEX
and NGLCM to further train the top classifier of AlexNet while the weights of the bottom layer
are fixed. Our heuristic training procedure allows us to tune the AlexNet with only 10 epoches
and train the top-layer classifier 100 epochs (roughly only 600 seconds on our server for each
testing case).

We compared HEX/ADV with the following methods that have been tested on PACS: AlexNet
(directly fine-tuning pretrained AlexNet on PACS training data [91]), DSN [12], L-CNN [91],
MLDG [92], Fusion [106]. Notice that most of the competing methods (DSN, L-CNN, MLDG,
and Fusion) have explicit knowledge about the domain identification of the training images. The
results are shown in Table 3.9. Impressively, HEX is only slightly shy of Fusion in terms of
overall performance. Fusion is a method that involves three different AlexNets, one for each
training domain, and a fusion layer to combine the representation for prediction. The Fusion
model is roughly three times bigger than HEX since the extra NGLCM component used by
HEX is negligible in comparison to AlexNet in terms of model complexity. Interestingly, HEX
achieves impressively high performance when the testing domain is Art painting and Cartoon,
while Fusion is good at prediction for Photo and Sketch.

Discussion We introduced two novel components: NGLCM that only extracts textural infor-
mation from an image, and HEX that projects the textural information out and forces the model
to focus on semantic information. Limitations still exist. For example, NGLCM cannot be
completely free of semantic information of an image. As a result, if we apply our method on
standard MNIST data set, we will see slight drop of performance because NGLCM also learns
some semantic information, which is then projected out. Also, training all the model parameters
simultaneously may lead into a trivial solution where FG (in Equation 3.7) learns garbage infor-
mation and HEX degenerates to the baseline model. To overcome these limitations, we invented
several training heuristics, such as optimizing FP and FG sequentially and then fix some weights.
However, we did not report results with training heuristics (expect for PACS experiment) because
we hope to simplify the methods. Another limitation we observe is that sometimes the training
performance of HEX fluctuates dramatically during training, but fortunately, the model picked
up by highest validation accuracy generally performs better than competing methods. Despite
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Figure 3.4: In addition to the primary classifier, our model consists of a number of side classi-
fiers, applied at each 1 ˆ 1 location in a designated early layer. The side classifiers result in one
prediction per spatial location. The goal of patch-wise adversarial regularization is to fool all
of them (via reverse gradient) while nevertheless outputting the correct class from the topmost
layer.

these limitations, we still achieved impressive performance on both synthetic and popular DG
data sets.

3.3.3 Patch-wise Adversarial Regularization
We use xX,yy to denote the samples and fpgp¨; δq; θq to denote a convolutional neural network,
where gp¨; δq denotes the output of the bottom convolutional layers (e.g., the first layer), and δ
and θ are parameters to be learned. The traditional training process addresses the optimization
problem

min
δ,θ

EpX,yqrlpfpgpX; δq; θq,yqs, (3.9)

where lp¨, ¨q denotes the loss function, commonly cross-entropy loss in classification problems.
Following the standard set-up of a convolutional layer, δ is a tensor of cˆmˆn parameters,

where c denotes the number of convolutional channels, and mˆn is the size of the convolutional
kernel. Therefore, for the ith sample, gpXi; δq is a representation of Xi of the dimension cˆm1ˆ

n1, where m1 (or n1) is a function of the image dimension and m (or n). 1

Patch-wise Adversarial Regularization We first introduce a new classifier, hp¨;φq that takes
the input of a c-length vector and predicts the label. Thus, hp¨;φq can be applied onto the repre-
sentation gpXi; δq and yield m1 ˆ n1 predictions. Therefore, each of the m1 ˆ n1 predictions can
be seen as a prediction made only by considering a small image patch corresponding to each of
the receptive fields in gpXi; δq. If any of the image patches are predictive and gp¨; δq summarizes
the predictive representation well, hp¨;φq can be trained to achieve a high prediction accuracy.

1The exact function depends on padding size and stride size, and is irrelevant to the discussion of this section.
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On the other hand, if gp¨; δq summarizes the patch-wise predictive representation well, higher
layers (fp¨; θq) can directly utilize these representation for prediction and thus may not be re-
quired to learn a global concept. Our intuition is that by regularizing gp¨; δq such that each fiber
(i.e., representation at the same location from every channel) in the activation tensor should not
be individually predictive of the label, we can prevent our model from relying on local patterns
and instead force it to learn a pattern that can only be revealed by aggregating information across
multiple receptive fields.

As a result, in addition to the standard optimization problem (Eq. 3.9), we also optimize the
following term:

min
φ

max
δ

EpX,yqr
m1,n1
ÿ

i,j

lphpgpX; δqi,j;φq,yqs (3.10)

where the minimization consists of training hp¨;φq to predict the label based on the local features
(at each spatial location) while the maximization consists of training gp¨; δq to shift focus away
from local predictive representations.

We hypothesize that by jointly solving these two optimization problems (Eq. 3.9 and Eq. 3.10),
we can train a model that can predict the label well without relying too strongly on local patterns.
The optimization can be reformulated into the following two problems:

min
δ,θ

EpX,yqrlpfpgpX; δq; θq,yq ´
λ

m1n1

m1,n1
ÿ

i,j

lphpgpX; δqi,j;φq,yqs

min
φ

EpX,yqr
λ

m1n1

m1,n1
ÿ

i,j

lphpgpX; δqi,j;φq,yqs

where λ is a tuning hyperparameter. We divide the loss by m1n1 to keep the two terms at a same
scale.

Our method can be implemented efficiently as follows: In practice, we consider hp¨;φq as a
fully-connected layer. φ consists of a c ˆ k weight matrix and a k-length bias vector, where k
is the number of classes. The m1 ˆ n1 forward operations as fully-connected networks can be
efficiently implemented as a 1 ˆ 1 convolutional operation with c input channels and k output
channels operating on the m1 ˆ n1 representation.

Note that although the input has m1 ˆ n1 vectors, hp¨;φq only has one set of parameters that
is used for all these vectors, in contrast to building a set of parameter for every receptive field
of the m1 ˆ n1 dimension. Using only one set of parameters can not only help to reduce the
computational load and parameter space, but also help to identify the predictive local patterns
well because the predictive local pattern does not necessarily appear at the same position across
the images. Our idea of our method is illustrated in Figure 3.4.

Other Extensions and Training Heuristics There can be many simple extensions to the basic
PAR setting we discussed above. Here we introduce three extensions that we will experiment
with later in the experiment section.
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More Powerful Pattern Classifier: We explore the space of discriminator architectures,
replacing the single-layer network hp¨;φq with a more powerful network architecture, e.g. a mul-
tilayer perceptron (MLP). In this section, we consider three-layer MLPs with ReLU activation
functions. We name this variant as PARM.

Broader Local Pattern: We can also extend the 1 ˆ 1 convolution operation to enlarge the
concept of “local”. In this section, we experiment with a 3 ˆ 3 convolution operation, thus the
number of parameters in φ is increased. We refer to this variant as PARB.

Higher Level of Local Concept: Further, we can also build the regularization upon higher
convolutional layers. Building the regularization on higher layers is related to enlarging the patch
of image, but also considering higher level of abstractions. In this section, we experiment the
regularization on the second layer. We refer this method as PARH.

Training Heuristics: Finally, we introduce the training heuristic that plays an important role
in our regularization technique, especially in modern architectures such as AlexNet or ResNet.
The training heuristic is simple: we first train the model conventionally until convergence (or
after a certain number of epochs), then train the model with our regularization. In other words,
we can also directly work on pretrained models and continue to fine-tune the parameters with
our regularization.

Experiments In this section, we test PAR over a variety of settings, we first test with per-
turbed MNIST under the domain generalization setting, and then test with perturbed CIFAR10
under domain adaptation setting. Further, we test on more challenging data sets, with PACS data
under domain generalization setting and our newly proposed ImageNet-Sketch data set. We com-
pare with previous state-of-the-art when available, or with the most popular benchmarks such as
DANN [39], InfoDrop [1], and HEX [163] on synthetic experiments.2,3

MNIST with Perturbation We follow the set-up of Wang et al. [163] in experimenting with
MNIST data set with different superficial patterns. There are three different superficial patterns
(radial kernel, random kernel, and original image). The training/validation samples are attached
with two of these patterns, while the testing samples are attached with the remaining one. As in
Wang et al. [163], training/validation samples are attached with patterns following two strategies:
1) independently: the pattern is independent of the digit, and 2) dependently: images of digit 0-4
have one pattern while images of digit 5-9 have the other pattern.

We use the same model architecture and learning rate as in Wang et al. [163]. The extra
hyperparameter λ is set as 1 as the most straightforward choice. Methods in Wang et al. [163]
are trained for 100 epochs, so we train the model for 50 epochs as pretraining and 50 epochs with
our regularization. The results are shown in Figure 3.5. In addition to the direct message that
our proposed method outperforms competing ones in most cases, it is worth mentioning that the
proposed methods behave differently in the “dependent” settings. For example, PARM performs
the best in the “original” and “radial” settings, but almost the worst among proposed methods
in the “random” setting, which may indicate that the pattern attached by “random” kernel can
be more easily detected and removed by PARM during training (Notice that the name of the
setting (“original”, “radial” or “random”) indicates the pattern attached to testing images, and

2Clean demonstration of the implementation can be found at: https://github.com/HaohanWang/PAR
3Source code for replication can be found at : https://github.com/HaohanWang/PAR experiments
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Figure 3.5: Prediction accuracy with standard deviation for MNIST with patterns. Notations: V:
vanilla baseline, E: HEX, D: DANN, I: InfoDrop, P: PAR, B: PARB, M: PARM, H: PARH

Table 3.10: Test accuracy of PAR and variants on Cifar10 datasets with perturbed color and tex-
ture.

ResNet DANN InfoDrop HEX PAR PARB PARM PARH

Greyscale 87.7 87.3 86.4 87.6 88.1 87.9 87.8 86.9
NegColor 62.8 64.3 57.6 62.4 66.2 65.3 67.6 62.7

RandKernel 43.0 33.4 41.3 42.5 47.0 40.5 47.5 40.8
RadialKernel 62.4 63.3 60.3 61.9 63.8 63.2 63.2 61.4

Average 63.9 62.0 61.4 63.6 66.3 64.2 66.5 62.9

the training samples are attached with the other two patterns).
CIFAR with Perturbation We continue to experiment on CIFAR10 data set by modifying the

color and texture of test dataset with four different schemas: 1) greyscale; 2) negative color; 3)
random kernel; 4) radial kernel. Some examples of the perturbed data are shown in Appendix.
In this experiment, we use ResNet-32 as our base classifier, which has a rough 92% prediction
accuracy on original CIFAR10 test data set.

As for PAR, we first train the base classifier for 250 epochs and then train with the adver-
sarial loss for another 150 epochs. As for the competing models, we also train for 400 epochs
with carefully selected hyperparameters. The overall performances are shown in Table 3.10. In
general, PAR and its variants achieve the best performances on all four test data sets, even when
DANN has an unfair advantage over others by seeing unlabelled testing data during training.
To be specific, PAR achieves the best performances on the greyscale and radial kernel settings;
PARM is the best on the negative color and random kernel settings. One may argue that the
numeric improvements are not significant and PAR may only affect the model marginally, but a
closer look at the training process of the methods indicates that our regularization of local pat-
terns benefits the robustness significantly while minimally impacting the original performance.
More detailed discussions are in Appendix.

PACS We test on the PACS data set [91], which consists of collections of images over four
domains, including photo, art painting, cartoon, and sketch. Many recent methods have been
tested on this data set, which offers a convenient way for PAR to be compared with the previous
state-of-the-art. Following Li et al. [91], we use AlexNet as baseline and build PAR upon it. We
compare with recently reported state-of-the-art on this data set, including DSN [12], LCNN [91],
MLDG [92], Fusion [106], MetaReg [6], Jigen [18], and HEX [163], in addition to the baseline
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reported in [91]. We are also aware that methods that explicitly use domain knowledge [e.g., 89]
may be helpful, but we do not directly compare with them numerically, as the methods deviate
from the central theme of this section.

Table 3.11: Prediction accuracy of PAR and variants on PACS data set in comparison with the
previously reported state-of-the-art results. Bold numbers indicate the best performance (three
sets, one for each scenario). We use ‹ to denote the methods that use the training setting in [18]
(e.g., extra data augmentation, different train-test split, and different learning rate scheduling).
Notably, PARH achieves the best performance in sketch testing case even in comparison to all
other methods without data augmentation.

Art Cartoon Photo Sketch Average Forgoing Domain ID Data Aug.
AlexNet 63.3 63.1 87.7 54 67.03 Y

DSN 61.1 66.5 83.2 58.5 67.33
L-CNN 62.8 66.9 89.5 57.5 69.18
MLDG 63.6 63.4 87.8 54.9 67.43
Fusion 64.1 66.8 90.2 60.1 70.30

MetaReg 69.8 70.4 91.1 59.2 72.63
HEX 66.8 69.7 87.9 56.3 70.18 Y
PAR 66.9 67.1 88.6 62.6 71.30 Y
PARB 66.3 67.8 87.2 61.8 70.78 Y
PARM 65.7 68.1 88.9 61.7 71.10 Y
PARH 66.3 68.3 89.6 64.1 72.08 Y
Jigen‹ 67.6 71.7 89.0 65.1 73.38 Y Y
PAR‹ 68.0 71.6 90.8 61.8 73.05 Y Y
PARB

‹ 67.6 70.7 90.1 62.0 72.59 Y Y
PARM

‹ 68.7 71.5 90.5 62.6 73.33 Y Y
PARH

‹ 68.7 70.5 90.4 64.6 73.54 Y Y

Following the training heuristics we introduced, we continue with trained AlexNet weights4

and fine-tune on training domain data of PACS for 100 epochs. We notice that once our regu-
larization is plugged in, we can outperform the baseline AlexNet with a 2% improvement. The
results are reported in Table 3.11, where we separate the results of techniques relying on domain
identifications and techniques free of domain identifications.

We also report the results based on the training schedule used by [18] as shown in the bottom
part of Table 3.11. Note that [18] used the random training-test split that are different from the
official split used by the other baselines. In addition, they used another data augmentation tech-
nique to convert image patch to grayscale which could benefit the adaptation to Sketch domain.

While our methods are in general competitive, it is worth mentioning that our methods im-
prove upon previous methods with a relatively large margin when Sketch is the testing domain.
The improvement on Sketch is notable because Sketch is the only colorless domain out of the
four domains in PACS. Therefore, when tested with the other three domains, a model may learn

4https://www.cs.toronto.edu/˜guerzhoy/tf alexnet/
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Table 3.12: Testing accuracy of competing methods on the ImageNet-Sketch data. The
bottom half denotes the method that has extra advantages: : denotes the method that has ac-
cess to unlabelled target domain data, and ‹ denotes the method that use extra data augmentation.

AlexNet InfoDrop HEX PAR PARB PARM PARH

Top 1 0.1204 0.1224 0.1292 0.1306 0.1273 0.1287 0.1266
Top 5 0.2480 0.2560 0.2654 0.2627 0.2575 0.2603 0.2544

DANN: JigGen‹ PAR‹ PARB
‹ PARM

‹ PARH
‹

Top 1 0.1360 0.1469 0.1494 0.1494 0.1501 0.1499
Top 5 0.2712 0.2898 0.2949 0.2945 0.2957 0.2954

to exploit the color information, which is usually local, to predict, but when tested with Sketch
domain, the model has to learn colorless concepts to make good predictions.

ImageNet-Sketch We use AlexNet as the baseline and test whether our method can help im-
prove the out-of-domain prediction. We start with ImageNet pretrained AlexNet and continue to
use PAR to tune AlexNet for another five epochs on the original ImageNet training dataset. The
results are reported in Table 3.12.

We are particularly interested in how PAR improves upon AlexNet, so we further investi-
gate the top-1 prediction results. Although the numeric results in Table 3.12 seem to show that
PAR only improves the upon AlexNet by predicting a few more examples correctly, we notice
that these models share 5025 correct predictions, while AlexNet predicts another 1098 images
correctly and PAR predicts a different set of 1617 images correctly.

We first investigate the examples that are correctly predicted by the original AlexNet, but
wrongly predicted by PAR. We notice some examples that help verify the performance of PAR.
For examples, PAR incorrectly predicts three instances of “keyboard” as “crossword puzzle,”
while AlexNet predicts these samples correctly. It is notable that two of these samples are “key-
boards with missing keys” and hence look similar to a “crossword puzzle.”

We also investigate the examples that are correctly predicted by PAR, but wrongly predicted
by the original AlexNet. Interestingly, we notice several samples that are wrongly predicted
by AlexNet because the model may only focus on the local patterns. The first example is a
stethoscope, PAR predicts it correctly with 0.66 confidence, while AlexNet predicts it to be a
hook. We conjecture the reason to be that AlexNet tends to only focus on the curvature which
resembles a hook. The second example tells a similar story, PAR predicts tricycle correctly with
0.92 confidence, but AlexNet predicts it as a safety pin with 0.51 confidence. We believe this is
because part of the image (likely the seat-supporting frame) resembles the structure of a safety
pin. For the third example, PAR correctly predicts it to be an Afghan hound with 0.89 confidence,
but AlexNet predicts it as a mop with 0.73 confidence. This is likely because the fur of the hound
is similar to the head of a mop. For the last example, PAR correctly predicts the object to be red
wine with 0.59 confidence, but AlexNet predicts it to be a goblet with 0.74 confidence. This is
likely because part of the image is indeed part of a goblet, but PAR may learn to make predictions
based on the global concept considering the bottle, the liquid, and part of the goblet together.
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Figure 3.6: Sample Images from ImageNet-Sketch.

3.4 The ImageNet-Sketch Dataset

Inspired by the Sketch data of [91] with seven classes, and several other Sketch datasets, such as
the Sketchy dataset [133] with 125 classes and the Quick Draw! dataset [123] with 345 classes,
and motivated by absence of a large-scale sketch dataset fitting the shape and size of popular
image classification benchmarks, we construct the ImageNet-Sketch data set for evaluating the
out-of-domain classification performance of vision models trained on ImageNet.

Compatible with standard ImageNet validation data set for the classification task, our ImageNet-
Sketch data set consists of 50000 images, 50 images for each of the 1000 ImageNet classes. We
construct the data set with Google Image queries “sketch of ”, where is the standard
class name. We only search within the “black and white” color scheme. We initially query 100
images for every class, and then manually clean the pulled images by deleting the irrelevant im-
ages and images that are for similar but different classes. For some classes, there are less than
50 images after manually cleaning, and then we augment the data set by flipping and rotating the
images.

We expect ImageNet-Sketch to serve as a unique ImageNet-scale out-of-domain evaluation
dataset for image classification. Also, notably, different from perturbed ImageNet validation sets
[41, 59], the images of ImageNet-Sketch are collected independently from the original validation
images. The independent collection procedure is more similar to [126], who collected a new
set of standard colorful ImageNet validation images. However, while their goal was to assess
overfitting to the benchmark validation sets, and thus they tried replicate the ImageNet collection
procedure exactly, our goald is to collect out-of-domain black-and-white sketch images with the
goal of testing a model’s ability to extrapolate out of domain.5 Sample images are shown in
Figure 3.6.

5The ImageNet-Sketch data can be found at: https://github.com/HaohanWang/ImageNet-Sketch
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3.5 Conclusion
The chapter is a collection of methods developed to learn robust models by countering the su-
perficial features. These empirical methods are validated by the empirical performances on the
benchmark datasets of image classification, mostly in the domain generalization setup. These
three methods fall into two different paradigms of solving this problem: to augment the data to
dilute the superficial features and to regularize the hypothesis space so that the model will be
incapable to learn a substantial amount of superficial features empirically. In addition, we notice
that there is a common theme of these methods of countering the superficial features, and there
may exist a principled view of these method development process. We will attempt to discuss
this principled view in the next chapter.
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Chapter 4

Principled Solutions of Learning Robust
Models by Countering Superficial Features

This chapter is aimed to serve as a reflection of the development of the empirical methods. Since
the development of the empirical methods all follow the the paradigm of asking the questions of
what are the superficial features and how we can counter the models to learn them, we will try
to formalize this paradigm in this chapter. Our formalization will lead to a new generalization
bound, and the bound will naturally lead to a set of principled solutions, which are conveniently
linked to the previously invented methods in this thesis. Finally, since all these methods will
require an extra knowledge of what the superficial features are, as the last piece of this chapter,
we will introduce a method that is absent of such knowledge, but can still do well empirically.

4.1 Background and Problem Setup

Our main goal is to quantify the generalization error bound of a model regarding the question
that if we train a model with data from one distribution (i.e., the source distribution), how can
we guarantee the error to be small over other unseen, but related distributions (i.e., target dis-
tributions). Quantifying the generalization error over two arbitrary distributions is not useful,
thus, we require the distributions of study similar but different: being similar in the sense that
there exists a common function that can achieve zero error over both distributions, while being
different in the sense that there exists another different function that can only achieve zero error
over the training distribution, but not the test distribution. We will formalize this “similar but
different” property in the sequel.

There is a rich collection of theoretical discussions in quantifying the generalization error
across distributions, mainly in the field of unsupervised domain adaptation [8, 9]. Most of these
analyses, although in various forms [30, 42, 108, 185], mostly involve two additional terms in
comparison to standard machine learning generalization bound: one term describes the “learn-
able” nature of the problem and one term quantifies the differences of the two distributions. This
second term probably inspired most of the empirical methods forcing invariant representations
from distributions, where “invariant” intuitively means the model’s prediction preserves under
certain shift of the data.
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Figure 4.1: A toy example of the main problem focused in this section. as we aim to classify
triangles vs. circles, the spurious correlation between color and shape in the training distribution
will likely mislead the model to learn a spurious decision boundary (the distribution-specific
labelling function), which may not be effective even if the marginals are aligned, but there exists
another decision boundary (labeling function), which can classify the target distribution data
correctly even if the marginals are not aligned.

Recently, the value of invariance is challenged [171, 187]. For example, Zhao et al. [187]
argued that “invariance is not sufficient” by showing counter examples violating the “learnable”
nature of the problem and formalized the understanding as that the two distributions have possi-
bly different labeling functions.

However, we find the argument of disparity in labeling functions less intuitive, because hu-
man will nonetheless be able to agree on the label of an object whichever distribution the object
lies in: in the context of this section, we argue a shared labeling function always exists (in any
task reasonable to human), but the ERM model may not have the incentive to learn this function
and learns a spurious one instead.

For example, our view of the challenges in this topic is illustrated with a toy example in
Figure 4.1 where the model is trained on the source domain data to classify triangle vs. circle
and tested on the target domain data. However, the color coincides with the shape on the source
domain, so the model may learn either the desired function (relying on shape) or the spurious
function (relying on color). The spurious function will not classify the target domain data cor-
rectly while the desired function can, but the ERM cannot differentiate them. As one may expect,
whether shape or color is considered as desired or spurious is subjective dependent on the task
or the data, and in general irrelevant to the statistical nature of the problem. Therefore, our error
bound will require the knowledge of the spurious function. While this is a toy example, this
scenario surly exists in real world tasks [e.g., 41, 75, 166].

Therefore, we formalize the problem as learning against spurious functions, and argue that the
central problem is still invariance, but instead of invariance to marginals, we urge for invariance
to the spurious function.

Notations We consider a binary classification problem from feature space X P Rp to label
space Y P t0, 1u. The distribution over X is denoted as P. A labeling function f : X Ñ Y is a
function that maps feature x to its label y. A hypothesis or model θ : X Ñ Y is also a function
that maps feature to the label. The difference in naming is only because we want to differentiate
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whether the function is a natural property of the space or distribution (thus called a labeling
function) or a function to estimate (thus called a hypothesis or model). The hypothesis space is
denoted as Θ. We use dom to denote the domain (input space) of a function, thus dompθq “ X .

This work studies the generalization error across two distributions, namely source and tar-
get distribution, denoted as Ps and Pt respectively. We are only interested when these two
distributions are, considered by a human, similar but different: being similar means there ex-
ists a human-aligned labeling function, fh, that maps any x P X to its label (thus the label
y :“ fhpxq); being different means there exists a superficial labeling function, fm, that for any
x „ Ps, fmpxq “ fhpxq. This “similar but different” property will be reiterated as an assumption
(A2) later. We use px,yq to denote a sample, and use pX,YqP to denote a finite dataset if the
features are drawn from P. We use εPpθq to denote the expected risk of θ over distribution P,
and use p̈ to denote the estimation of the term ¨ (e.g., the empirical risk is pεPppθq). We use lp¨, ¨q to
denote a generic loss function.

For a dataset pX,YqP, if we train a model with

pθ “ arg min
θPΘ

ÿ

px,yqPpX,YqP

lpθpxq,yq, (4.1)

previous generalization study suggests that we can expect the error rate to be bounded as

εPppθq ď pεPppθq ` φp|Θ|, n, δq, (4.2)

where εPppθq and pεPppθq respectively are

εPppθq “ Ex„P|
pθpxq ´ y| “ Ex„P|

pθpxq ´ fhpxq| and pεPppθq “
1

n

ÿ

px,yqPpX,YqP

|pθpxq ´ y|,

and φp|Θ|, n, δq is a function of hypothesis space |Θ|, number of samples n, and δ accounts for
the probability when the bound holds. This section only concerns with this generic form that can
subsume many discussions, each with its own assumptions. We refer to these assumptions as A1.
A1: basic assumptions needed to derived (4.2), for example,

when A1 is “Θ is finite, lp¨, ¨q is a zero-one loss, samples are i.i.d”, φp|Θ|, n, δq “
a

plogp|Θ|q ` logp1{δqq{2n

when A1 is “samples are i.i.d”, φp|Θ|, n, δq “ 2RpLq`
a

plog 1{δq{2n, where RpLq
stands for Rademacher complexity and L “ tlθ | θ P Θu, where lθ is the loss function
corresponding to θ.

For more information or more concrete examples of the generic term, one can refer to
relevant textbooks such as [13].

4.2 Generalization Bound of Learning Robust Models by Coun-
tering Superficial Features

Formally, we state the challenge of our human-aligned robust learning problem as the assump-
tion:
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A2: Existence of Superficial Features: For any x P X , y :“ fhpxq. We also have a fm that is
different from fh, and for x „ Ps, fhpxq “ fmpxq.

Thus, the existence of fm is a key reason to the lack of guarantees of the small empirical risk
over Ps being generalized to Pt, because θ that learns either fh or fm will lead to small source
error, but only θ that learns fh will lead to small target error. Note that fm may not exist for an
arbitrary Ps. In other words, A2 can be interpreted as a regulation to Ps so that fm, while being
different from fh, exists for any x „ Ps.

In this problem, fm and fh are not the same despite fmpxq “ fhpxq for any x „ Ps, and
we consider the differences lie in the features they use. To describe this difference, we introduce
the notation Ap¨, ¨q, which denotes a set parametrized by the labeling function and the sample,
to describe the active set of features that are used by the labeling function. By active set, we
refer to the minimum set of features that a labeling function requires to map a sample to its label.
Formally, we define

Apf,xq “ arg min
zPdompfq,fpzq“fpxq

|ti|zi “ xiu|, (4.3)

where | ¨ | measures the cardinality. Although fmpxq “ fhpxq, Apfm,xq and Apfh,xq can be
different. Apfm,xq is the superficial features following our definition.

Further, we define a new function difference given a sample as

dpθ, f,xq “ max
zPdompfq:zApf,xq“xApf,xq

|θpzq ´ fpzq|, (4.4)

where xApf,xq denotes the features of x indexed by Apf,xq. In other words, the distance de-
scribes: given a sample x, what is the maximum disagreement of the two functions θ and f for
all the other data z P X with a constraint that the features indexed by Apf,xq are the same as
those of x. Notice that this difference is not symmetric, as the active set is determined by the
second function. By definition, we have dpθ, f,xq ě |θpxq ´ fpxq|.

We introduce the following assumption:
A3: Realized Hypothesis: Given a large enough hypothesis space Θ, for any sample px,yq, for

any θ P Θ, which is not a constant mapping, if θpxq “ y, then dpθ, fh,xqdpθ, fm,xq “ 0

Intuitively, A3 assumes θ at least learns one labeling function for the sample x if θ can map
the x correctly.

Finally, to describe how θ depends on the active set of f , we introduce the term

rpθ,Apf,xqq “ max
xApf,xqPdompfqApf,xq

|θpxq ´ y|, (4.5)

where xApf,xq P dompfqApf,xq denotes that the features of x indexed by Apf,xq are searched
in the input space dompfq. Notice that rpθ,Apf,xqq “ 1 alone does not mean θ depends on
the active set of f , it only means so when we also have θpxq “ y (see formal discussion in
Lemma A2.1). With all above, we formalize a new generalization bound as follows:
Theorem 4.2.1. With Assumptions A1-A3, lp¨, ¨q is a zero-one loss, with probability as least 1´δ,
we have

εPtpθq ď pεPspθq ` cpθq ` φp|Θ|, n, δq (4.6)
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where cpθq “
1

n

ř

px,yqPpX,YqPs
Irθpxq “ ysrpθ,Apfm,xqq.

Ir¨s is a function that returns 1 if the condition ¨ holds true, and 0 otherwise. As θ may
learn fm, pεPspθq can no longer alone indicate εPtpθq, thus we introduce cpθq to account for the
discrepancy. Intuitively, cpθq quantifies the samples that are correctly predicted, but only because
the θ learns fm for that sample. cpθq critically depends on the knowledge of fm.

4.2.1 In Comparison to the View of Domain Adaptation
We further compare Theorem 4.2.1 with established understandings of domain adaptation. We
summarize the several domain adaptation understandings [8, 9, 30, 42, 108, 185] in the following
form:

εPtpθq ď pεPspθq `DΘpPs,Ptq ` λ` φ
1
p|Θ|, n, δq (4.7)

where DΘpPs,Ptq quantifies the differences of the two distributions, and λ describes the nature
of the problem, and usually involves non-estimable terms about the problem or the distributions.

For example, [9] formalized the difference as H-divergence, and described the corresponding
empirical term as (Θ∆Θ is the set of disagreement between two hypotheses in Θ):

DΘpPs,Ptq “ 1´ min
θPΘ∆Θ

p
1

n

ÿ

x:θpxq“0

Irx P pX,YqPss `
1

n

ÿ

x:θpxq“1

Irx P pX,YqPtsq, (4.8)

where m denotes the number of unlabelled samples in Ps and Pt each. λ “ εPtpθ
‹q ` εPspθ

‹q,
where θ‹ “ arg minθPΘ εPtpθq ` εPspθq,

In our formalization, as we assume the fh applies to any x P X (according to A2), λ “ 0
as long as the hypothesis space is large enough. Therefore, the difference mainly lies in the
comparison between cpθq and DΘpPs,Ptq. To compare them, we need an extra assumption:
A4: Sufficiency of Training Samples: for the two finite datasets in the study, i.e., pX,YqPs

and pX,YqPt , for any x P pX,YqPt , there exists one or many z P pX,YqPs such that

x P tx1|x1 P X and x1Apfh,zq “ zApfh,zqu (4.9)

A4 intuitively means the finite training dataset needs to be diverse enough to describe the
concept that needs to be learned. For example, imagine building a classifier to classify mammals
vs. fishes from the distribution of photos to the distribution of sketches, we cannot expect the
classifier to do anything good on dolphins if dolphins only appear in the test sketch dataset. A4
intuitively regulates that if dolphins will appear in the test sketch dataset, they must also appear
in the training dataset.

Now, in comparison to [9], we have
Theorem 4.2.2. With Assumptions A2-A4, and if 1´ fh P Θ, we have

cpθq ď DΘpPs,Ptq `
1

n

ÿ

px,yqPpX,YqPt

Irθpxq “ ysrpθ,Apfm,xqq (4.10)

where cpθq “
1

n

ř

px,yqPpX,YqPs
Irθpxq “ ysrpθ,Apfm,xqq andDΘpPs,Ptq is defined as in (4.8).
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The comparison involves an extra term, qpθq :“ 1
n

ř

px,yqPpX,YqPt
Irθpxq “ ysrpθ,Apfm,xqq,

which intuitively means that if θ learns fm, how many samples θ can coincidentally predict cor-
rectly over the finite target set used to estimate DΘpPs,Ptq. For sanity check, if we replace
pX,YqPt with pX,YqPs , DΘpPs,Ptq will be evaluated at 0 as it cannot differentiate two identi-
cal datasets, and qpθq will be the same as cpθq. On the other hand, if no samples from pX,YqPt
can be mapped correctly with fm (coincidentally), qpθq “ 0 and cpθq will be a lower bound of
DΘpPs,Ptq.

The value of Theorem 4.2.2 lies in the fact that for an arbitrary target dataset pX,YqPt , no
samples out of which can be predicted correctly by learning fm (a situation likely to occur for
arbitrary datasets), cpθq will always be a lower bound of DΘpPs,Ptq.

Further, when Assumption A4 does not hold, we are unable to derive a clear relationship
between cpθq andDΘpPs,Ptq. The difference is mainly raised as a matter of fact that, intuitively,
we are only interested in the problems that are “solvable” (A4, i.e., hypothesis that used to reduce
the test error in target distribution can be learned from the finite training samples) but “hard to
solve” (A2, i.e., another labeling function, namely fm, exists for features sampled from the source
distribution only), while DΘpPs,Ptq estimates the divergence of two arbitrary distributions.

4.2.2 Estimation of cpθq
The estimation of cpθq mainly involves two difficulties: the requirement of the knowledge of fm
and the computational cost of the search over the entire space X .

The first difficulty is unavoidable by definition because the human-aligned learning has to be
built upon the prior knowledge of what labeling function a human considers similar (what fh is)
or its opposite (what fm is). Fortunately, in practice, we usually directly have the knowledge of
Apfm,xq, i.e., the superficial features, such as the texture of images.

The second difficulty is a computational problem, and we have a rich set of techniques to help
circumvent it. For example, the search can be terminated once rpθ,Apfm,xqq is evaluated as 1
(i.e., once we find a perturbation of superficial features that alters the prediction). This is similar
to how adversarial attack [49] is used to evaluate the robustness of models. To further reduce the
computational cost, one can consider to generate some out-of-domain data by perturbing super-
ficial features beforehand, using these fixed perturbed data to evaluate may not be as accurate as
using adversarial attack process, but it can usually reflect some flaws of the models that worth
further attentions, as did by [41, 75, 166].

4.3 Principled Solutions
We continue to study how our formal analysis can lead to practical methods to learn human-
aligned robust models. We first show that our formal result can naturally connect to existing
methods for robust machine learning from both of those perspectives discussed. Further, as these
methods all require some knowledge of assumptions of the superficial features, we continue to
explore a new method that does not require so.

Theorem 4.2.1 suggests that to train a human-aligned robust model amounts to training for
small cpθq in addition to training for small empirical error (i.e., pεPspθq).
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4.3.1 Connections to (Worst-case) Data Augmentation (Section 3.2)
We can consider the upper bound of cpθq

cpθq ď
1

n

ÿ

px,yqPpX,Yq

rpθ,Apfm,xqq “
1

n

ÿ

px,yqPpX,Yq

max
xApfm,xqPdompfmqApfm,xq

|θpxq ´ y|, (4.11)

which intuitively means that instead of cpθq that studies only the correct predictions based on fm,
now we study any prediction based on fm.

Further, as |θpxq ´ y| ď maxxApfm,xqPdompfmqApfm,xq |θpxq ´ y|, training for small (4.11) natu-
rally subsumes training for small empirical loss. Therefore, we can directly train a model with

min
θ

1

n

ÿ

px,yqPpX,Yq

max
xApfm,xqPdompfmqApfm,xq

lpθpxq,yq, (4.12)

which is to perturb the superficial features to maximize the training loss and then to solve the
optimization problem with the perturbed samples. This is the worst-case data augmentation
method [36] we discussed previously, and closely connected to the most widely accepted solution
in the adversarial robust literature: the adversarial training [104]

While the above result shows that the method for learning human-aligned robust models is in
mathematical connection to the method of worst-case data augmentation, in practice, a general
application of this method will require some more assumptions.

In practice, when we use data augmentation to learn human-aligned models, we need either
of the two following assumptions to hold:

A5-1: Labeling Functions Separability of Features For any x P X , Apfh,xq XApfm,xq “ H
A5-2: Labeling Functions Separability of Input Space We redefine fm : dompfmq Ñ Y and

dompfmq Ĺ X . For any x P X , maxzPdompfmqXdompfhq |fhpzq ´ fhpzq| “ 0

While both of these assumptions appear strong, we believe a general discussion of human-
aligned models may not be able to built without these assumptions. In particular, A5-1 describes
the situations that f 1h do not use the same set of features as f 1m. One example of this situation
could be that the background of an image in dog vs. cat classification is considered features
for f 1m, and the foreground of an image is considered as features for f 1h. A5-2 describes the
situations that while f 1m can uses the features that are considered by f 1h, the perturbation of the
features within the domain of f 1m will not change the output of f 1h. One example of this situation
could be that the texture of dog or cat in the dog vs. cat classification, while the texture can
be perturbed, the perturbation cannot be allowed to an arbitrary scale of pixels (otherwise the
perturbation is not a perturbation of texture). If neither of these assumptions holds, then the
perturbation will be allowed to replace a dog’s body with the one of a dolphin, and even human
may not be able to confidently decide the resulting image is a dog, thus human-aligned learning
will not be worth discussion.

4.3.2 Connections to Regularizing the Hypothesis Space (Section 3.3)
Connecting our theory to the other main thread is little bit tricky, as we need to extend the model
to an encoder/decoder structure, where we use θe and θd to denote the encoder and decoder
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respectively. Thus, by definition, we have θpxq “ θdpθepxqq. Further, we define f 1m as the
equivalent of fm with the difference of operating on the representations θepxq. With the setup,
optimizing the empirical loss and cpθq leads to:

min
θd,θe

1

n

ÿ

px,yqPpX,Yq

lpθdpθepxqq,yq ´ lpf
1
mpθepxqq,yq. (4.13)

First, we need to formally introduce the properties regarding f 1m, as a correspondence to those
of fm.

Notations and Background with Encoder/Decoder Structure With the same binary classifi-
cation problem from feature space X to label space Y . We consider the encoder θe : X Ñ E and
decoder θd : E Ñ Y , f 1 : E Ñ Y is the function that maps the embedding to the label.

Similarly, we introduce the assumptions on the E space.
A2’: Existence of Superficial Features: For any x P X and an oracle encoder θe that e “

θepxq, y :“ f 1hpeq. We also have a f 1m that is different from f 1h, and for x „ Ps and
e “ θepxq, f 1hpeq “ f 1mpeq.

A3’: Realized Hypothesis: Given a large enough hypothesis space Θd for decoders, for any
sample px,yq and an encoder θe that e “ θepxq, for any θd P Θd, which is not a constant
mapping, if θdpeq “ y, then dpθd, f 1h, eqdpθd, f

1
m, eq “ 0

With the above assumptions, following the same logic, we can derive the theorem corre-
sponding to Theorem 3.1, with the only difference that how cpθq is now derived.
Lemma 4.3.1. With Assumptions A1, A2’, A3’, lp¨, ¨q is a zero-one loss, with probability as least
1´ δ, we have

εPtpθq ď pεPspθq ` cpθq ` φp|Θ|, n, δq (4.14)

where cpθq “
1

n

ř

px,yqPpX,YqPs
Irθpxq “ ysrpθd,Apf 1m, θepxqqq.

Now, we continue to show that how training for small cpθq amounts to solving (4.13). To
proceed, we need either of the two following assumptions to hold:

A5-1’: Labeling Functions Separability of Features For any x P X and an encoder θe that
e “ θepxq, Apf 1h, eq XApf 1m, eq “ H

A5-2’: Labeling Functions Separability of Input Space We redefine f 1m : dompf 1mq Ñ Y and
dompf 1mq Ĺ E . For any x P X and an encoder θe that e “ θepxq, maxzPdompf 1mqXdompf 1hq

|f 1hpzq´
f 1hpzq| “ 0

Also, notice that, assumptions A5-1’ and A5-2’ also regulates the encoder to be reasonably
good. In other words, these assumptions will not hold for arbitrary encoders.
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Now, we continue to derive (4.13) from Lemma B.1 as the following:

cpθq “
1

n

ÿ

px,yqPpX,Yq

Irθdpθepxqq “ ysrpθd,Apf 1m,xqq

“
1

n

ÿ

px,yqPpX,Yq

Irθdpθepxqq “ ys max
θepxqApf 1m,xq

PdompθdqApf 1m,xq
|θdpθepxqq ´ y|

“
1

n

ÿ

px,yqPpX,Yq

max
θepxqApf 1m,xq

PdompθdqApf 1m,xq
|f 1mpθepxqq ´ y|

ď
1

n

ÿ

px,yqPpX,Yq

max
θepxqPdompθdq

|f 1mpθepxqq ´ y|

The third line is because of the definition of Irθdpθepxqq “ ysrpθd,Apf 1m,xqq and assumptions
of A3’ and either A5-1’ or A5-2’. Therefore, optimizing the empirical loss and cpθq leads to

min
θd,θe

1

n

ÿ

px,yqPpX,Yq

lpθdpθepxqq,yq ´ lpf
1
mpθepxqq,yq

Then the question left is how to get f 1m. We can design a specific architecture given the prior

knowledge of the data, then f 1m can be directly estimated through minf 1m
1

n

ř

px,yqPpX,Yq lpf
1
mpθepxqq,yq,

which connects to many methods in previous section, such as [162]. Alternatively, we can esti-
mate f 1m guided by other labels (e.g., domain ids, batch ids etc.), then we simply have

min
f 1m

1

n

ÿ

px,tqPpX,Tq

lpf 1mpθepxqq, tq,

which connects to many of the methods in domain adaptation literature, especially [39].

4.4 The Self-Challenging Algorithm
While our analysis suggests that we cannot have a robust model without the knowledge of S or
fh, we continue to ask that what the best we can do without such knowledge. If we use F to
denote the set tfh,Su and use i to index its element, we can have the following upper bound to
optimize

cpθq ď
1

n

ÿ

px,yqPpX,Yq

rpθ,ApS,xqq ď 1

n

ÿ

px,yqPpX,Yq

ÿ

i

rpθ,ApFi,xqq. (4.15)

By optimizing the RHS of (4.15), we aim to discourage the learning towards functions that
only rely on one labelling function for each sample for any labelling functions. Intuitively, the
method is to encourage the model’s usage in all possible features (either associated with fh or S),
thus the model may be more robust to the changes of features when dealing with perturbations
of the data.
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A model using all the features is not expected to be better than a method that only uses
the fh associated features. However, as many other methods require specific knowledge of the
superficial features, we believe this method is a better practice than vanilla training when there
are no side information, since we can use the model estimated in the previous iteration as a
substitute of fh or S.

Therefore, ideally, our proposed algorithm can be sketched as the follows. At iteration t
• Identify Apθpt´1q,xq

• Sample z “ arg maxxApθpt´1q,xq
Pdompθpt´1qqApθpt´1q,xq

|θpt´1qpxq ´ y|

• Continue to train the model with z to get θptq

where the second step is worst-case data augmentation.
Further, this idea can be straightforwardly extended to the encoder/decoder structure fol-

lowing the related discussion in the previous section. With θe and θd denoting the encoder and
decoder respectively and e “ θepxq, we have the algorithm sketched for the encoder/decoder
structure as

• Identify Apθpt´1q
d ,xq

• Sample z “ arg max
e
Apθpt´1q

d
,eq
Pdompθpt´1q

d q
Apθpt´1q

d
,eq

|θ
pt´1q
d peq ´ y|

• Continue to train the model with z to get θptq

Inspired by these results, the next section introduces the self-challenging method that can
empirically learn the robust models without any knowledge of the superficial features.

4.4.1 Background and Related Work

Imagine teaching a child to visually differentiate “dog” from “cat”: when presented with a collec-
tion of illustrations from her picture books, she may immediately answer that “cats tend to have
chubby faces” and end the learning. However, if we continue to ask for more differences, she
may start to notice other features like ears or body-size. We conjecture this follow-up challenge
question plays a significant role in helping human reach the remarkable generalization ability.
Most people should be able to differentiate “cat” from “dog” visually even when the images are
presented in irregular qualities. After all, we did not stop learning after we picked up the first
clue when we were children, even the first clue was good enough to help us recognize all the
images in our textbook.

Nowadays, deep neural networks have exhibited remarkable empirical results over various
computer vision tasks, yet these impressive performances seem unmet when the models are tested
with the samples in irregular qualities [166] (i.e., out-of-domain data, samples collected from the
distributions that are similar to, but different from the distributions of the training samples).
To account for this discrepancy, technologies have been invented under the domain adaptation
regime [9, 15], where the goal is to train a model invariant to the distributional differences be-
tween the source domain (i.e., the distribution of the training samples) and the target domain
(i.e., the distribution of the testing samples) [22, 167].

As the influence of machine learning increases, the industry starts to demand the models that
can be applied to the domains that are not seen during the training phase. Domain generalization
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Figure 4.2: The essence of our Representation Self-Challenging (RSC) training method: top two panels:
the algorithm mutes the feature representations associated with the highest gradient, such that the network
is forced to predict the labels through other features; bottom panel: after training, the model is expected
to leverage more features for prediction in comparison to models trained conventionally.

[114], as an extension of domain adaptation, has been studied as a response. The central goal is
to train a model that can align the signals from multiple source domains.

Further, Wang et al. extend the problem to ask how to train a model that generalizes to an
arbitrary domain with only the training samples, but not the corresponding domain information,
as these domain information may not be available in the real world [163]. Our section builds
upon this set-up and aims to offer a solution that allows the model to be robustly trained without
domain information and to empirically perform well on unseen domains.

In this section, we introduce a simple training heuristic that improves cross-domain general-
ization. This approach discards the representations associated with the higher gradients at each
epoch, and forces the model to predict with remaining information. Intuitively, in a image clas-
sification problem, our heuristic works like a “self-challenging” mechanism as it prevents the
fully-connected layers to predict with the most predictive subsets of features, such as the most
frequent color, edges, or shapes in the training data. We name our method Representation Self
Challenging (RSC) and illustrate its main idea in Figure 4.2.

We present mathematical analysis that RSC induces a smaller generalization bound. We
further demonstrate the empirical strength of our method with domain-agnostic cross-domain
evaluations, following previous setup [163]. We also conduct ablation study to examine the
alignment between its empirical performance and our intuitive understanding. The inspections
also shed light upon the choices of its extra hyperparameter.

We summarize the related DG works from two perspectives: learning domain invariant fea-
tures and augmenting source domain data. Further, as RSC can be broadly viewed as a generic
training heuristic for CNN, we also briefly discuss the general-purpose regularizations that ap-
pear similar to our method.

DG through Learning Domain Invariant Features: These methods typically minimize
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the discrepancy between source domains assuming that the resulting features will be domain-
invariant and generalize well for unseen target distributions. Along this track, Muandet et al.
employed Maximum Mean Discrepancy (MMD) [114]. Ghifary et al. proposed a multi-domain
reconstruction auto-encoder [44]. Li et al. applied MMD constraints to an autoencoder via
adversarial training [94].

Recently, meta-learning based techniques start to be used to solve DG problems. Li et al.
alternates domain-specific feature extractors and classifiers across domains via episodic training,
but without using inner gradient descent update [93]. Balaji et al. proposed MetaReg that learns a
regularization function (e.g., weighted `1 loss) particularly for the network’s classification layer,
while excluding the feature extractor [6].

Further, recent DG works forgo the requirement of source domains partitions and directly
learn the cross-domain generalizable representations through a mixed collection of training data.
Wang et al. extracted robust feature representation by projecting out superficial patterns like
color and texture [163]. Wang et al. penalized model’s tendency in predicting with local features
in order to extract robust globe representation [162]. RSC follows this more recent path and
directly activates more features in all source domain data for DG without knowledge of the
partition of source domains.

DG through Augmenting Source Domain: These methods augment the source domain to a
wider span of the training data space, enlarging the possibility of covering the span of the data in
the target domain. For example, An auxiliary domain classifier has been introduced to augment
the data by perturbing input data based on the domain classification signal [136]. Volpi et al.
developed an adversarial approach, in which samples are perturbed according to fictitious target
distributions within a certain Wasserstein distance from the source [158]. A recent method with
state-of-the art performance is JiGen [18], which leverages self-supervised signals by solving
jigsaw puzzles.

Key difference: These approaches usually introduce a model-specific DG model and rely on
prior knowledge of the target domain, for instance, the target spatial permutation is assumed
by JiGen [18]. In contrast, RSC is a model-agnostic training algorithm that aims to improve
the cross-domain robustness of any given model. More importantly, RSC does not utilize any
knowledge of partitions of domains, either source domain or target domain, which is the general
scenario in real world application.

Generic Model Regularization: CNNs are powerful models and tend to overfit on source
domain datasets. From this perspective, model regularization, e.g., weight decay [118], early
stopping, and shake-shake regularization [40], could also improve the DG performance. Dropout
[143] mutes features by randomly zeroing each hidden unit of the neural network during the train-
ing phase. In this way, the network benefit from the assembling effect of small subnetworks to
achieve a good regularization effect. Cutout [29] and HaS [141] randomly drop patches of input
images. SpatialDropout [149] randomly drops channels of a feature map. DropBlock [43] drops
contiguous regions from feature maps instead of random units. DropPath [87] zeroes out an en-
tire layer in training, not just a particular unit. MaxDrop [119] selectively drops features of high
activations across the feature map or across the channels. Adversarial Dropout [120] dropouts
for maximizing the divergence between the training supervision and the outputs from the net-
work. [90] leverages Adversarial Dropout [120] to learn discriminative features by enforcing the
cluster assumption.
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4.4.2 Method

Notations: px,yq denotes a sample-label pair from the data collection pX,Yq with n samples,
and z (or Z) denotes the feature representation of px,yq learned by a neural network. fp¨; θq de-
notes the CNN model, whose parameters are denoted as θ. hp¨; θtopq denotes the task component
of fp¨; θq; hp¨; θtopq takes z as input and outputs the logits prior to a softmax function; θtop denotes
the parameters of hp¨; θtopq. lp¨, ¨q denotes a generic loss function. RSC requires one extra scalar
hyperparameter: the percentage of the representations to be discarded, denoted as p. Further, we
use p̈ to denote the estimated quantities, use ˜̈ to denote the quantities after the representations are
discarded, and use t in the subscript to index the iteration. For example, pθt means the estimated
parameter at iteration t.

Self-Challenging Algorithm

As a generic deep learning training method, RSC solves the same standard loss function as the
ones used by many other neural networks, i.e.,

pθ “ arg min
θ

ÿ

xx,yy„xX,Yy

lpfpx; θq,yq,

but RSC solves it in a different manner.
At each iteration, RSC inspects the gradient, identifies and then mutes the most predictive

subset of the representation z (by setting the corresponding values to zero), and finally updates
the entire model.

This simple heuristic has three steps (for simplicity, we drop the indices of samples and
assume the batch size is 1 in the following equations):

1. Locate: RSC first calculates the gradient of upper layers with respect to the representation
as follows:

gz “ Bphpz; pθtop
t q d yq{Bz, (4.16)

whered denotes an element-wise product. Then RSC computes the p100´pqth percentile,
denoted as qp. Then it constructs a masking vector m in the same dimension of g as
follows. For the ith element:

mpiq “

#

0, if gzpiq ě qp

1, otherwise
(4.17)

In other words, RSC creates a masking vector m, whose element is set to 0 if the corre-
sponding element in g is one of the top p percentage elements in g, and set to 1 otherwise.

2. Mute: For every representation z, RSC masks out the bits associated with larger gradients
by:

z̃ “ zdm (4.18)
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Algorithm 1: RSC Update Algorithm
Input: data set xX,Yy, percentage of representations to discard p, other configurations
such as learning rate η, maximum number of epoches T , etc;

Output: Classifier fp¨; pθq;
random initialize the model pθ0;
while t ď T do

for every sample (or batch) x,y do
calculate z through forward pass;
calculate gz with Equation 4.16;
calculate qp and m as in Equation 4.17;
generate z̃ with Equation 4.18;
calculate gradient g̃θ with Equation 4.19 and Equation 4.20;
update pθt`1 as a function of pθt and g̃θ

end
end

3. Update: RSC computes the softmax with perturbed representation with

s̃ “ softmaxphpz̃; pθtop
t qq, (4.19)

and then use the gradient

g̃θ “ Blps̃,yq{Bpθt (4.20)

to update the entire model for pθt`1 with optimizers such as SGD or ADAM.
We summarize the procedure of RSC in Algorithm 1. No that operations of RSC comprise

of only few simple operations such as pooling, threshold and element-wise product. Besides the
weights of the original network, no extra parameter needs to be learned.

Theoretical Evidence

To expand the theoretical discussion smoothly, we will refer to the “dog” vs. “cat” classification
example repeatedly as we progress. The basic set-up, as we introduced in the beginning of this
section, is the scenario of a child trying to learn the concepts of “dog” vs. “cat” from illustrations
in her book: while the hypothesis “cats tend to have chubby faces” is good enough to classify all
the animals in her picture book, other hypotheses mapping ears or body-size to labels are also
predictive.

On the other hand, if she wants to differentiate all the “dogs” from “cats” in the real world,
she will have to rely on a complicated combination of the features mentioned about. Our main
motivation of this section is as follows: this complicated combination of these features is already
illustrated in her picture book, but she does not have to learn the true concept to do well in her
finite collection of animal pictures.
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This disparity is officially known as “covariate shift” in domain adaptation literature: the
conditional distribution (i.e., the semantic of a cat) is the same across every domain, but the model
may learn something else (i.e., chubby faces) due to the variation of marginal distributions.

With this connection built, we now proceed to the theoretical discussion, where we will
constantly refer back to this “dog” vs. “cat” example.

Background As the large scale deep learning models, such as AlexNet or ResNet, are noto-
riously hard to be analyzed statistically, we only consider a simplified problem to argue for the
theoretical strength of our method: we only concern with the upper layer hp¨; θtopq and illustrate
that our algorithm helps improve the generalization of hp¨; θtopq when Z is fixed. Therefore, we
can directly treat Z as the data (features). Also, for convenience, we overload θ to denote θtop

within the theoretical evidence section.
We expand our notation set for the theoretical analysis. As we study the domain-agnostic

cross-domain setting, we no longer work with i.i.d data. Therefore, we use Z and Y to denote
the collection of distributions of features and labels respectively. Let Θ be a hypothesis class,
where each hypothesis θ P Θ maps Z to Y . We use a set D (or S) to index Z , Y and θ. Therefore,
θ‹pDq denotes the hypothesis with minimum error in the distributions specified with D, but with
no guarantees on the other distributions.

e.g., θ‹pDq can be “cats have chubby faces” when D specifies the distribution to be picture
book.

Further, θ‹ denotes the classifier with minimum error on every distribution considered. If
the hypothesis space is large enough, θ‹ should perform no worse than θ‹pDq on distributions
specified by D for any D.

e.g., θ‹ is the true concept of “cat”, and it should predict no worse than “cats have chubby
faces” even when the distribution is picture book.

We use pθ to denote any ERM and use pθRSC to denote the ERM estimated by the RSC method.
Finally, following conventions, we consider lp¨, ¨q as the zero-one loss and use a shorthand no-
tation Lpθ;Dq “ Exz,yy„xZpDq,YpDqylphpz; θq,yq for convenience, and we only consider the finite
hypothesis class case within the scope of this section, which leads to the first formal result:
Corollary 4.4.1. If

|epzpSq; θ‹RSCq ´ epz̃pSq; θ‹RSCq| ď ξppq, (4.21)

where ep¨; ¨q is a function defined as

epz; θ‹q :“ Exz,yy„S lpfpz; θ‹q;yq

and ξppq is a small number and a function of RSC’s hyperparameter p; z̃ is the perturbed version
of z generated by RSC, it is also a function of p, but we drop the notation for simplicity.

Before we continue the discussions, we first introduce some additional assumptions,
A1: Θ is finite; lp¨, ¨q is zero-one loss for binary classification.
The assumption leads to classical discussions on the i.i.d setting in multiple textbooks (e.g.,

[110]). However, modern machine learning concerns more than the i.i.d setting, therefore, we
need to quantify the variations between train and test distributions. Analysis of domain adapta-
tion is discussed [9], but still relies on the explicit knowledge of the target distribution to quantify
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the bound with an alignment of the distributions. The following discussion is devoted to the sce-
nario when we do not have the target distribution to align.

Since we are interested in the θ‹ instead of the θ‹pDq, we first assume Θ is large enough
and we can find a global optimum hypothesis that is applicable to any distribution, or in formal
words:

A2: Lpθ‹;Dq “ Lpθ‹pDq;Dq for any D.
This assumption can be met when the conditional distribution PpYpDq|ZpDqq is the same for
any D.

e.g., The true concept of “cat” is the same for any collection of images.
The challenge of cross-domain evaluation comes in when there exists multiple optimal hy-

pothesis that are equivalently good for one distribution, but not every optimal hypothesis can be
applied to other distributions.

e.g., For the distribution of picture book, “cats have chubby faces” can predict the true concept
of “cat”. A model only needs to learn one of these signals to reduce training error, although
the other signal also exists in the data.

The follow-up discussion aims to show that RSC can force the model to learn multiple sig-
nals, so that it helps in cross-domain generalization.

Further, Assumption A2 can be interpreted as there is at least some features z that appear
in every distributions we consider. We use i to index this set of features. Assumption A2 also
suggests that zi is i.i.d. (otherwise there will not exist θ‹) across all the distributions of interest
(but z is not i.i.d. because z´i, where ´i denotes the indices other than i, can be sampled from
arbitrary distributions).

e.g., z is the image; zi is the ingredients of the true concept of a “cat”, such as ears, paws, and
furs; z´i is other features such as “sitting by the window”.

We use O to specify the distribution that has values on the ith, but 0s elsewhere. We introduce
the next assumption:

A3: Samples of any distribution of interest (denoted as A) are perturbed version of samples
from O by sampling arbitrary features for z´i: EArESrzss “ EOrzs

Notice that this does not contradict with our cross-domain set-up: while Assumption A3
implies that data from any distribution of interest is i.i.d (otherwise the operation EArs is not
valid), the cross-domain difficulty is raised when only different subsets of A are used for train
and test. For example, considering A to be a uniform distribution of r0, 1s, while the train set is
uniformly sampled from r0, 0.5s and the test set is uniformly sampled from p0.5, 1s.
Corollary 4.4.2. If Assumptions A1, A2, and A3 hold, we have, with probability at least 1´ δ

LppθRSCpSq;Sq ´ Lpθ‹RSCpSq;Dq

ď p2ξppq ` 1q

c

2plogp2|ΘRSC|q ` logp2{δqq

n

As the result shows, whether RSC will succeed depends on the magnitude of ξppq. The
smaller ξppq is, the tighter the bound is, the better the generalization bound is. Interestingly, if
ξppq “ 0, our result degenerates to the classical generalization bound of i.i.d data.
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While it seems the success of our method will depend on the choice of Θ to meet Con-
dition 4.21, we will show RSC is applicable in general by presenting it forces the empirical
counterpart pξppq to be small. pξppq is defined as

pξppq :“|hppθRSC, zq ´ hppθRSC, z̃q|,

where the function hp¨, ¨q is defined as

hppθRSC, zq “
ÿ

pz,yq„S

lpfpz; pθRSCq;yq. (4.22)

We will show pξppq decreases at every iteration with more assumptions:
A4: Discarding the most predictive features will increase the loss at current iteration.

A5: The learning rate η is sufficiently small (η2 or higher order terms are negligible).
Formally,

Corollary 4.4.3. If Assumption A4 holds, we can simply denote

hppθRSCptq, z̃tq “ γtppqhppθRSCptq, ztq,

where hp¨, ¨q is defined in Equation 4.22. γtppq is an arbitrary number greater than 1, also a
function of RSC’s hyperparameter p. Also, if Assumption A5 holds, we have:

ΓppθRSCpt` 1qq “ ΓppθRSCptqq ´ p1´
1

γtppq
q||g̃||22η

where

ΓppθRSCptqq :“ |hppθRSCptq, ztq ´ hppθRSCptq, z̃tq|

t denotes the iteration, zt (or z̃t) denotes the features (or perturbed features) at iteration t, and
g̃ “ BhppθRSCptq, z̃tq{BpθRSCptq

Notice that pξppq “ ΓppθRSCq, where pθRSC is pθRSCptq at the last iteration t. We can show that
pξppq is a small number because ΓppθRSCptqq gets smaller at every iteration. This discussion is also
verified empirically, as shown in Figure 4.3.

The decreasing speed of ΓppθRSCptqq depends on the scalar γtppq: the greater γtppq is, the faster
ΓppθRSCptqq descends. Further, intuitively, the scale of γtppq is highly related to the mechanism of
RSC and its hyperparameter p. For example, RSC discards the most predictive representations,
which intuitively guarantees the increment of the empirical loss (Assumption A4).

Finally, the choice of p governs the increment of the empirical loss: if p is small, the per-
turbation will barely affect the model, thus the increment will be small; while if p is large, the
perturbation can alter the model’s response dramatically, leading to significant ascend of the loss.
However, we cannot blindly choose the largest possible p because if p is too large, the model may
not be able to learn anything predictive at each iteration.

In summary, we offer the intuitive guidance of the choice of hyperparamter p: for the same
model and setting,
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Figure 4.3: ΓppθRSCptqq, i.e., “Loss Difference”, plotted for the PACS experiment (details of the
experiment setup will be discussed later). Except for the first epoch, ΓppθRSCptqq decreases con-
sistently along the training process.

• the smaller p is, the smaller the training error will be;
• the bigger p is, the smaller the (cross-domain) generalization error (i.e., difference between

testing error and training error) will be.
Therefore, the success of our method depends on the choice of p as a balance of the above two
goals.

Engineering Specification & Extensions

For simplicity, we detail the RSC implementation on a ResNet backbone + FC classification
network. RSC is applied to the training phase, and operates on the last convolution feature tensor
of ResNet. Denote the feature tensor of an input sample as Z and its gradient tensor of as G. G is
computed by back propagating the classification score with respect to the ground truth category.
Both of them are of size r7ˆ 7ˆ 512s.

Spatial-wise RSC: In the training phase, global average pooling is applied along the channel
dimension to the gradient tensor G to produce a weighting matrix wi of size r7 ˆ 7s. Using this
matrix, we select top p percentage of the 7 ˆ 7 “ 49 cells, and mute its corresponding features
in Z. Each of the 49 cells correspond to a r1 ˆ 1 ˆ 512s feature vector in Z. After that, the
new feature tensor Znew is forwarded to the new network output. Finally, the network is updated
through back-propagation. We refer this setup as spatial-wise RSC, which is the default RSC for
the rest of this section.

Channel-wise RSC: RSC can also be implemented by dropping features of the channels
with high-gradients. The rational behind the channel-wise RSC lies in the convolutional nature
of DNNs. The feature tensor of size r7 ˆ 7 ˆ 512s can be considered a decomposed version of
input image, where instead of the RGB colors, there are 512 different characteristics of the each
pixels. The C characteristics of each pixel contains different statistics of training data from that
of the spatial feature statistics.
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For channel-wise RSC, global average pooling is applied along the spatial dimension of G,
and produce a weighting vector of size r1 ˆ 512s. Using this vector, we select top p percentage
of its 512 cells, and mute its corresponding features in Z. Here, each of the 512 cells correspond
to a r7ˆ 7s feature matrix in Z. After that, the new feature tensor Znew is forwarded to the new
network output. Finally, the network is updated through back-propagation.

Batch Percentage: Some dropout methods like curriculum dropout [111] do not apply
dropout at the beginning of training, which improves CNNs by learning basic discriminative
clues from unchanged feature maps. Inspired by these methods, we randomly apply RSC to
some samples in each batch, leaving the other unchanged. This introduces one extra hyperpa-
rameter, namely Batch Percentage: the percentage of samples to apply RSC in each batch. We
also apply RSC to top percentage of batch samples based on cross-entropy loss. This setup is
slightly better than randomness.

Detailed ablation study on above extensions will be conducted in the experiment section
below.

4.4.3 Experiments
Datasets

We consider the following four data collections as the battleground to evaluate RSC against
previous methods.

• PACS [91]: seven classes over four domains (Artpaint, Cartoon, Sketches, and Photo).
The experimental protocol is to train a model on three domains and test on the remaining
domain.

• VLCS [150]: five classes over four domains. The domains are defined by four image
origins, i.e., images were taken from the PASCAL VOC 2007, LabelMe, Caltech and Sun
datasets.

• Office-Home [154]: 65 object categories over 4 domains (Art, Clipart, Product, and Real-
World).

• ImageNet-Sketch [162]: 1000 classes with two domains. The protocol is to train on
standard ImageNet [129] training set and test on ImageNet-Sketch.

Ablation Study

We conducted five ablation studies on possible configurations for RSC on the PACS dataset [91].
All results were produced based on the ResNet18 baseline in [18] and were averaged over five
runs.

(1) Feature Dropping Strategies (Table 4.1). We compared the two attention mechanisms to
select the most discriminative spatial features. The “Top-Activiation” [119] selects the features
with highest norms, whereas the “Top-Gradient” (default in RSC) selects the features with high
gradients. The comparison shows that “Top-Gradient” is better than “Top-Activation”, while
both are better than the random strategy. Without specific note, we will use “Top-Gradient” as
default in the following ablation study.
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(2) Feature Dropping Percentage (choice of p) (Table 4.2): We ran RSC at different dropping
percentages to mute spatial feature maps. The highest average accuracy was reached at p “
33.3%. While the best choice of p is data-specific, our results align well with the theoretical
discussion: the optimal p should be neither too large nor too small.

Feature Drop Strategies backbone artpaint cartoon sketch photo Avg Ò

Baseline [18] ResNet18 78.96 73.93 70.59 96.28 79.94
Random ResNet18 79.32 75.27 74.06 95.54 81.05

Top-Activation ResNet18 80.31 76.05 76.13 95.72 82.03
Top-Gradient ResNet18 81.23 77.23 77.56 95.61 82.91

Table 4.1: Ablation study of Spatial-wise RSC on Feature Dropping Strategies. Feature Dropping
Percentage 50.0% and Batch Percentage 50.0%.

Feature Dropping Percentage backbone artpaint cartoon sketch photo AvgÒ

66.7% ResNet18 80.11 76.35 76.24 95.16 81.97
50.0% ResNet18 81.23 77.23 77.56 95.61 82.91
33.3% ResNet18 82.87 78.23 78.89 95.82 83.95
25.0% ResNet18 81.63 78.06 78.12 96.06 83.46
20.0% ResNet18 81.22 77.43 77.83 96.25 83.18
13.7% ResNet18 80.71 77.18 77.12 96.36 82.84

Table 4.2: Ablation study of Spatial-wise RSC on Feature Dropping Percentage. We used “Top-
Gradient” and fixed the Batch Percentage (50.0%) here.

Batch Percentage backbone artpaint cartoon sketch photo AvgÒ

50.0% ResNet18 82.87 78.23 78.89 95.82 83.95
33.3% ResNet18 82.32 78.75 79.56 96.05 84.17
25.0% ResNet18 81.85 78.32 78.75 96.21 83.78

Table 4.3: Ablation study of Spatial-wise RSC on Batch Percentage. We used “Top-Gradient”
and fixed Feature Dropping Percentage (33.3%).

Method backbone artpaint cartoon sketch photo AvgÒ

Spatial ResNet18 82.32 78.75 79.56 96.05 84.17
Spatial+Channel ResNet18 83.43 80.31 80.85 95.99 85.15

Table 4.4: Ablation study of Spatial-wise RSC verse Spatial+Channel RSC. We used the best
strategy and parameter by Table 4.3:“Top-Gradient”, Feature Dropping Percentage(33.3%) and
Batch Percentage(33.3%).
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Method backbone artpaint cartoon sketch photo AvgÒ

Baseline [18] ResNet18 78.96 73.93 70.59 96.28 79.94
Cutout[29] ResNet18 79.63 75.35 71.56 95.87 80.60

DropBlock[43] ResNet18 80.25 77.54 76.42 95.64 82.46
AdversarialDropout[120] ResNet18 82.35 78.23 75.86 96.12 83.07

Random(S+C) ResNet18 79.55 75.56 74.39 95.36 81.22
Top-Activation(S+C) ResNet18 81.03 77.86 76.65 96.11 82.91

RSC: Top-Gradient(S+C) ResNet18 83.43 80.31 80.85 95.99 85.15

Table 4.5: Ablation study of Dropout methods. “S” and “C” represent spatial-wise and channel-
wise respectively. For fair comparison, results of above methods are report at their best setting
and hyperparameters. RSC used the hyperparameters selected in above ablation studies:“Top-
Gradient”, Feature Dropping Percentage (33.3%) and Batch Percentage (33.3%).

(3) Batch Percentage (Table 4.3): RSC has the option to be only randomly applied to a
subset of samples in each batch. Table 4.3 shows that the performance is relatively constant.
Nevertheless we still choose 33.3% as the best option on the PACS dataset.

(4) Spatial-wise plus Channel-wise RSC (Table 4.4): In “Spatial+Channel”, both spatial-wise
and channel-wise RSC were applied on a sample at 50% probability, respectively. (Better options
of these probabilities could be explored.) Its improvement over Spatial-wise RSC indicates that
it further activated features beneficial to target domains.

PACS backbone artpaint cartoon sketch photo Avg Ò

Baseline[18] AlexNet 66.68 69.41 60.02 89.98 71.52
Hex[163] AlexNet 66.80 69.70 56.20 87.90 70.20
PAR[162] AlexNet 66.30 66.30 64.10 89.60 72.08

MetaReg[6] AlexNet 69.82 70.35 59.26 91.07 72.62
Epi-FCR[93] AlexNet 64.70 72.30 65.00 86.10 72.00

JiGen[18] AlexNet 67.63 71.71 65.18 89.00 73.38
MASF[32] AlexNet 70.35 72.46 67.33 90.68 75.21
RSC(ours) AlexNet 71.62 75.11 66.62 90.88 76.05

Baseline[18] ResNet18 78.96 73.93 70.59 96.28 79.94
MASF[32] ResNet18 80.29 77.17 71.69 94.99 81.03

Epi-FCR[93] ResNet18 82.10 77.00 73.00 93.90 81.50
JiGen[18] ResNet18 79.42 75.25 71.35 96.03 80.51

MetaReg[6] ResNet18 83.70 77.20 70.30 95.50 81.70
RSC(ours) ResNet18 83.43 80.31 80.85 95.99 85.15

Baseline[18] ResNet50 86.20 78.70 70.63 97.66 83.29
MASF[32] ResNet50 82.89 80.49 72.29 95.01 82.67
MetaReg[6] ResNet50 87.20 79.20 70.30 97.60 83.60
RSC(ours) ResNet50 87.89 82.16 83.35 97.92 87.83

Table 4.6: DG results on PACS[91] (Best in bold).
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VLCS backbone Caltech Labelme Pascal Sun Avg Ò

Baseline[18] AlexNet 96.25 59.72 70.58 64.51 72.76
Epi-FCR[93] AlexNet 94.10 64.30 67.10 65.90 72.90

JiGen[18] AlexNet 96.93 60.90 70.62 64.30 73.19
MASF[32] AlexNet 94.78 64.90 69.14 67.64 74.11
RSC(ours) AlexNet 97.61 61.86 73.93 68.32 75.43

Table 4.7: DG results on VLCS [150] (Best in bold).

(5) Comparison with different dropout methods (Table 4.5): Dropout has inspired a num-
ber of regularization methods for CNNs. The main differences between those methods lie in
applying stochastic or non-stochastic dropout mechanism at input data, convolutional or fully
connected layers. Results shows that our gradient-based RSC is better. We believe that gradient
is an efficient and straightforward way to encode the sensitivity of output prediction. To the best
of our knowledge, we compare with the most related works and illustrate the impact of gradi-
ents. (a) Cutout [29]. Cutout conducts random dropout on input images, which shows limited
improvement over the baseline. (b) DropBlock [43]. DropBlock tends to dropout discriminative
activated parts spatially. It is better than random dropout but inferior to non-stochastic dropout
methods in Table 4.5 such as AdversarialDropout, Top-Activation and our RSC. (c) Adversar-
ialDropout [90, 120]. AdversarialDropout is based on divergence maximization, while RSC is
based on top gradients in generating dropout masks. Results show evidence that the RSC is more
effective than AdversarialDropout. (d) Random and Top-Activation dropout strategies at their
best hyperparameter settings.

Office-Home backbone Art Clipart Product Real Avg Ò

Baseline[18] ResNet18 52.15 45.86 70.86 73.15 60.51
JiGen[18] ResNet18 53.04 47.51 71.47 72.79 61.20
RSC(ours) ResNet18 58.42 47.90 71.63 74.54 63.12

Table 4.8: DG results on Office-Home [154] (Best in bold).

ImageNet-Sketch backbone Top-1 Acc Ò Top-5 Acc Ò

Baseline[163] AlexNet 12.04 24.80
Hex[163] AlexNet 14.69 28.98
PAR [162] AlexNet 15.01 29.57
RSC(ours) AlexNet 16.12 30.78

Table 4.9: DG results on ImageNet-Sketch [162].

Cross-Domain Evaluation

Through the following experiments, we used “Top-Gradient” as feature dropping strategy, 33.3%
as Feature Dropping Percentages, 33.3% as Batch Percentage, and Spatial+Channel RSC. All

68



results were averaged over five runs. In our RSC implementation, we used the SGD solver,
30 epochs, and batch size 128. The learning rate starts with 0.004 for ResNet and 0.001 for
AlexNet, learning rate decayed by 0.1 after 24 epochs. For PACS experiment, we used the same
data augmentation protocol of randomly cropping the images to retain between 80% to 100%,
randomly applied horizontal flipping and randomly (10% probability) convert the RGB image to
greyscale, following [18].

In Tables 4.6,4.7,4.8, we compare RSC with the latest domain generalization work, such as
Hex [163], PAR [162], JiGen [18] and MetaReg [6]. All these work only report results on differ-
ent small networks and datasets. For fair comparison, we compared RSC to their reported per-
formances with their most common choices of DNNs (i.e., AlexNet, ResNet18, and ResNet50)
and datasets. RSC consistently outperforms other competing methods.

The empirical performance gain of RSC can be better appreciated if we have a closer look
at the PACS experiment in Table. 4.6. The improvement of RSC from the latest baselines [18]
are significant and consistent: 4.5 on AlexNet, 5.2 on ResNet18, and 4.5 on ResNet50. It is
noticeable that, with both ResNet18 and ResNet50, RSC boosts the performance significantly
for sketch domain, which is the only colorless domain. The model may have to understand the
semantics of the object to perform well on the sketch domain. On the other hand, RSC performs
only marginally better than competing methods in photo domain, which is probably because that
photo domain is the simplest one and every method has already achieved high accuracy on it.

4.4.4 Discussion

ImageNet backbone Top-1 Acc Ò Top-5 Acc Ò #Param. Ó

Baseline ResNet50 76.13 92.86 25.6M
RSC(ours) ResNet50 77.18 93.53 25.6M
Baseline ResNet101 77.37 93.55 44.5M

RSC(ours) ResNet101 78.23 94.16 44.5M
Baseline ResNet152 78.31 94.05 60.2M

RSC(ours) ResNet152 78.89 94.43 60.2M

Table 4.10: Generalization results on ImageNet. Baseline was produced with official Pytorch
implementation and their ImageNet models.

Standard ImageNet Benchmark: With the impressive performance observed in the cross-
domain evaluation, we further explore to evaluate the benefit of RSC with other benchmark data
and higher network capacity.

We conducted image classification experiments on the Imagenet database[129]. We chose
three backbones with the same architectural design while with clear hierarchies in model ca-
pacities: ResNet50, ResNet101, and ResNet152. All models were finetuned for 80 epochs with
learning rate decayed by 0.1 every 20 epochs. The initial learning rate for ResNet was 0.01. All
models follow extra the same training prototype in default Pytorch ImageNet implementation,
using original batch size of 256, standard data augmentation and 224ˆ 224 as input size.
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The results in Table 4.10 shows that RSC exhibits the ability reduce the performance gap be-
tween networks of same family but different sizes (i.e., ResNet50 with RSC approaches the
results of baseline ResNet101, and ResNet101 with RSC approaches the results of baseline
ResNet151). The practical implication is that, RSC could induce faster performance saturation
than increasing model sizes. Therefore one could scale down the size of networks to be deployed
at comparable performance.

4.5 Conclusion
This chapter is a reflection of the development of the empirical methods, aiming to offer a sum-
mary of the development strategies of the empirical methods by countering superficial features,
which can potentially inspire the development of the future development of the methods. Our
formalization of the problem leads to a proved generalization bound on the problem of learning
robust models by countering superficial features. The proved bound also leads to the discussion
of a new method.
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Chapter 5

Robustar: a Visual Interactive Toolbox to
Counter Superficial Features with Human
Supervision

Building upon the discussions of the previous chapters, we believe that one solution to learn the
robust models by countering the superficial features lies in the key factor that one needs to be
aware of the superficial features. Although we introduced an empirical method (Section 4.4) that
can perform well on a collection of benchmark datasets for learning robust models, our theory
(Section 4.2) suggests that a reliable, principled solution will inevitable require such knowledge.

This chapter aims to offer a solution to the practical challenge that we may not always have
the knowledge of superficial features in image classification in practice to directly perform data
augmentations or design regularizations. In this case, we can resort to the domain experts for the
knowledge of superficial features. However, even when the domain experts are willing to offer
the expertise, the knowledge may not easily be translated into an inductive bias or separable
features. In addition, it may not be strategic to ask the domain expert use annotate the unuseful
features for all the images in the training set.

Therefore, this chapter introduces an interactive toolbox that
• allows the domain experts to inspect how the model is making decisions and interact with

the data by annotate the superficial features exploited by the model.
• guide the domain experts’ focus to pay particular attention to the samples and features that

leads to the model’s learning of superficial features, leaving other samples untouched so
that annotators’ attention is needed at a minimum scale.

• offers convenient interface to allow the users directly continue to train or finetune the model
with annotated data.

5.1 Overview

Figure 5.1 shows the overview process of the software. The software can work with models
trained elsewhere, as long as these are standard vision models and have the standard pytorch
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Figure 5.1: The working flow of the Robustar software: 1. the model can be trained elsewhere
and then fed into the software; 2. With new test samples, the model can help identify the samples
that are responsible for the prediction through influence function; 3. the software offers saliency
map to help the user know which part of the features the model are paying necessary attention;
4. the users can use the drawing tools to brush out the superficial pixels; 5. new annotation of
these images will serve as the role as augmented images for continued training.

checkpoints available. One can also edit our source code to integrate other vision models. If
the influence function results are also calculated, the software can guide the users to the samples
that are believed to be responsible for the incorrect classification of the images. Further, our
software will also guide the user’s attention of the features by the saliency-style interpretation of
the models. Then the users can user canvas tool to annotate the superficial pixels of the images.
Finally, with the newly annotated superficial features, we can continue to update the model with
data augmentation and consistency regularization to help us discard these superficial features.
The detailed training strategy has been discussed in Section 3.2.

5.2 Setup

As the goal of this system is to calibrate the model’s prediction indeed aligns to the goal of the
study, instead of exploiting some superficial features that correlate with the labels within a given
dataset, we need to start with a model with reasonably small training and validation errors. Users
can either upload such a model to the system or use the functions offered by the system to train a
new model. In either case, the whole training dataset is expected upload also for the calibration.
Also, we recommend the users to consider a model boosted by the adversarial training [104]
technique, which is one of the most effective methods that can defend the model’s against minor
texture shifts.

To take the most advantage of the system, we recommend the user to use out-of-domain test
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Figure 5.2: The main panel and its major functions for users to annotate the superficial features.

samples (i.e., test samples from an independent data collection instead of from a cross-validated
split), because the test data from the same collection (distribution) with training data tend to
share the same superficial features with training data, thus may be inadequate to help identify the
superficial features. As long as the test samples can represent a wider range of distributions, we
do not need a large number of test samples

5.3 Identifying Superficial Features

Identifying Misleading Samples Ideally, to achieve a robust learning system, the signal from
every sample needs to be examined and calibrated by human, which requires a potentially unre-
alistic working load. Thus, we have to rely on the system to propose the suspiciously misleading
samples first.

The central assumption that enables the automatic proposal is that the superficial features
are not shared between training samples and testing samples, so that when a test sample is mis-
classified, it is mostly due to the fact that the model learns a biased signal that accounts for the
misclassification. This allows us to identify the samples with superficial features (i.e., the sam-
ples that contribute to the misclassification.) Influence function [80] conveniently allows us to
identify the samples that account for the misclassification.

Interpret Model’s Decision With the identification of misleading samples, we continue to un-
derstand which part of the image sample deceives the model’s decision. This process requires the
neural network interpretation methods. We notice that, if the model is invariant to simple texture
variations (e.g., boosted by adversarial training), the pioneering model-interpretation methods,
activation maximization [35] can sufficiently fulfill our goal.
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Identify Superficial Features with Human Supervision The above analysis interprets which
signals the model is leveraging to make a prediction. The human annotator needs to check further
about whether the model predicts based on superficial features, and if so, the annotator needs to
help pinpoint the superficial features in the data and so that our system can help to erase it.

If any of the interpretation area overlaps with the bias signal of the data, the annotation needs
to use our system to select that area through our system. The interface offers the function for
the annotator to “brush” out the pixels of the superficial features. To further help the annotator
in the process of selecting the area of superficial features, we first use a semantic segmentation
model to offer proposals of areas. If a segmented areas consists nothing but superficial features,
the annotators can directly select that area, instead of selecting each pixels.

Randomized the identified signals After the annotators help identify the biased signal of the
data, we need to further train our system to ignore those systems. The most straightforward step
is to augment the data with the superficial features replaced with random patterns. To create a
random pattern, we simply use randomize the pixel values of any identified areas.

5.4 Model Update
Now with the newly augmented data, we can continue to finetune the model with new augmented
data and consistency regularization, following the techniques discussed in Section 3.2 The soft-
ware also offers a panel for the users to update the hyperparamters used for training.

5.5 Conclusion
In the case when one does not know the superficial features explicitly in image classification,
we offer a software for the users to inspect the training data and annotate the superficial image
features. Further, our software can also help to identify the samples that may mislead the model
and can help pinpoint the features that are used by the model to reduce the workload of the users.
Our software can be found as https://github.com/HaohanWang/Robustar. With Docker installed,
our software can be installed and run with two commands.
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Chapter 6

Conclusion

In this thesis, we studied the problem of learning robust models with a narrow focus on the
hypothesis that a reason of the non-robust behavior of learning robust models lies in the fact that
there are superficial features that is undesired for the model to learn. We study the problem with
different technical perspectives.

We first validated the hypothesis listed in Figure 1.1 and discussed some empirical observa-
tions. We also leveraged the empirical observation to explain several interesting machine learning
behaviors.

Then, over the battleground of image classification, we discussed multiple methods to com-
pete with previous SOTA methods. The main evaluation metric is cross-domain test accuracy,
with a scenario we propose and refer to as domain generalization without domain IDs. We also
introduced the ImageNet-Sketch dataset to test the robustness of an image classification model.

We continued to look at the theoretical foundation of this problem, proving a new general-
ization bound when the model is trained over data with superficial features. The formalization
helps explain the performance drop of when the models are tested with other dataset. Also, the
formalization are interestingly connected to the methods we developed in the previous section.

Finally, we contributed a toolbox with graphic user interface that allows users to examine
how an image classification model perceives the data and to annotate the superficial features the
model exploits.

75



76



Appendix A

Appendix

77



A1 Proofs for Chapter 3.2: Data Augmentation & Consis-
tency Loss

A1.1 Assumptions and Validations

Assumptions on Data Augmentation Functions

We first regulate some basic properties of the data transformation functions used. Intuitively, we
will consider the following three properties.
A1: “Dependence-preservation” with two perspectives: Label-wise, the transformation cannot

alter the label of the data, which is a central requirement of almost all the data augmentation
functions in practice. Feature-wise, the transformation will not introduce new dependen-
cies between the samples.

A2: “Efficiency”: the augmentation should only generate new samples of the same label as
minor perturbations of the original one. If a transformation violates this property, there
should exist other simpler transformations that can generate the same target sample.

A3: “Vertices”: There are extreme cases of the transformations. For example, if one needs the
model to be invariant to rotations from 0˝ to 60˝, we consider the vertices to be 0˝ rotation
function (thus identity map) and 60˝ rotation function. In practice, one usually selects the
transformation vertices with intuitions.

These properties are formally introduced as assumptions below.

A1: Dependence-preservation: the transformation function will not alter the dependency re-
garding the label (i.e., for any apq P A, apxq will have the same label as x) or the features
(i.e., a1px1q and a2px2q are independent if x1 and x2 are independent).

Remarks of A1:
• We consider the label-wise half of this argument as a fundamental property of any data

augmentations. It has to be always true for data augmentation to be a useful technique.
• The feature-wise half of this argument is a fundamental property required to derive the gen-

eralization error bounds. Intuitively, it should hold for most data augmentation techniques
in practice.

A2: Efficiency: for pθ and any apq P A, fpapxq; pθq is closer to x than any other samples under a
distance metric dep¨, ¨q, i.e., depfpapxq; pθq, fpx; pθqq ď minx1PX´x depfpapxq;

pθq, fpx1; pθqq.
We define dep¨, ¨q to be `1 norm.

Validation of A2:

• We test the assumption with MNIST data and rotation experiment. A2 essentially states
the distance dep¨, ¨q is the smaller between a sample and its augmented copy (60˝ rotation)
than the sample and the augmented copy from any other samples. We take 1000 training
examples and calculate the `1 pair-wise distances between the samples and its augmented
copies, then we calculated the frequencies when the A2 hold for one example. We repeat
this for three different models, the vanilla model, the model trained with augmented data,
and the model trained with regularized adversarial training. The results are shown in the

78



Table A1 and suggest that, although the A2 does not hold in general, it holds for regular-
ized adversarial training case, where A2 is used. Further, we test the assumption in a more
challenging case, where half of the training samples are 15˝ rotations of the other half, thus
we may expect the A2 violated for every sample. Finally, as A2 is essentially introduced
to replace the empirical Wasserstein distance with `1 distances of the samples and the aug-
mented copies, we directly compare these metrics. However, as the empirical Wasserstein
distance is forbiddingly hard to calculate (as it involves permutation statistics), we use a
greedy heuristic to calculate by iteratively picking the nearest neighbor of a sample and
then remove the neighbor from the pool for the next sample. Our inspection suggests that,
even in the challenging scenario, the paired distance is a reasonably good representative of
Wasserstein distance for regularized adversarial training method.

Standard Scenario Challenging Scenario
Vanilla Augmented Regularized Vanilla Augmented Regularized

Frequency when A2 holds 0.005 0.152 0.999 0.001 0.021 0.711
Paired Distance 217968.06 42236.75 1084.4 66058.4 28122.45 4287.31

Wasserstein (greedy) 152736.47 38117.77 1084.4 37156.5 20886.7 4218.53
Paired/Wasserstein 1.42 1.10 1 1.77 1.34 1.02

Table A1: Empirical results from synthetic data for Assumption A2.

A3: Vertices: For a model pθ and a transformation apq, we use Pa,pθ to denote the distribution

of fpapxq; pθq for px,yq „ P. “Vertices” argues that exists two extreme elements in A,
namely a` and a´, with certain metric dxp¨, ¨q, we have

dxpPa`,pθ,Pa´,pθq “ sup
a1,a2PA

dxpPa1,pθ
,Pa2,pθ

q

We define dxp¨, ¨q to be Wasserstein-1 metric.

Discussion of A3:
• Notice that we do not need to argue that A3 always holds. All we need is that A3 can

sometimes hold, and when it holds, we can directly train with the regularized vertex aug-
mentation. Thus, anytime RVA empirically performs well is a favorable argument for A3.
To show that RVA can sometimes perform well, we compare the RVA with vanilla (non-
regularized) worst-case data augmentation (VWA) method across our synthetic experiment
setup. We notice that out of six total scenarios ({texture, rotation, contrast} ˆ {MNIST,
CIFAR10}), RVA outperforms VWA frequently (Table A2). This suggests that the domain-
knowledge of vertices can actually help in most cases, although not guaranteed in every
case.

Assumptions on Background and Generalization Error Bound

We first summarize a thread of previous analyses for error bounds in an extremely abstract man-
ner. When the test data and train data are from the same distribution, many previous analyses
can be sketched as:

rPppθq ď prPppθq ` φp|Θ|, n, δq (A.1)
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Table A2: Results to show that A3 can sometimes hold.
Texture Rotation Invariance

Acc. Rob. Inv. Acc. Rob. Inv. Acc. Rob. Inv.

MNIST
RVA 99.1 99 100 99.3 95.1 65.4 99.4 97.4 41.3
VWA 99.2 99.3 99.4 94.4 94.1 62.8 98.2 98.4 40.2

CIFAR10
RVA 63.5 62.2 100 75.9 47.7 67.8 76.7 69.3 57.4
VWA 60.5 58.1 100 71.4 61.7 91.7 74.8 63.2 34.3

which states that the expected risk rPppθq can be bounded by the empirical risk prPppθq and a func-
tion of hypothesis space |Θ| and number of samples n; δ accounts for the probability when the
bound holds. φpq is a function of these three terms. Dependent on the details of different analy-
ses, different concrete examples of this generic term will need different assumptions. We use a
generic assumption A4 to denote the assumptions required for each example (Appendix A1.1).

Following our main goal to study how consistency loss and data augmentation help in accu-
racy, robustness, and invariance, our strategy in theoretical analysis is to derive error bounds for
accuracy and robustness, and the error bound directly contains terms to regularize the invariance.
Further, as robustness naturally bounds accuracy (i.e., rPppθq ď rP,Appθq following the definitions
in (3.1) and (3.2) respectively), we only need to study the robust error.

To study the robust error, we need two additional technical assumptions. A5 connects the
worst distribution of expected risk and the worst distribution of the empirical risk, and A6 con-
nects the 0-1 classification error and cross-entropy error. Details of these assumptions are in
Appendix A1.1.

A4: We list two classical examples here:

when A4 is “Θ is finite, lp¨, ¨q is a zero-one loss, samples are i.i.d”, φp|Θ|, n, δq “
a

plogp|Θ|q ` logp1{δqq{2n

when A4 is “samples are i.i.d”, φp|Θ|, n, δq “ 2RpLq`
a

plog 1{δq{2n, where RpLq
stands for Rademacher complexity and L “ tlθ | θ P Θu, where lθ is the loss function
corresponding to θ.

For more information or more concrete examples of the generic term, one can refer to
relevant textbooks such as [13].

Remarks of A4:
• A4 stands for the fundamental assumptions used to derive standard generalization bounds.

We rely on this assumption as how previous analytical works rely on it.

A5: the worst distribution for expected risk equals the worst distribution for empirical risk, i.e.,

arg max
P 1PT pP,Aq

rP1ppθq “ arg max
P 1PT pP,Aq

prP1ppθq

where T pP,Aq is the collection of distributions created by elements in A over samples
from P.

Motivation of A5:
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• Eq. (3.2) (in main paper) can be written equivalently into the expected risk over a pseudo
distribution P1 (see Lemma 1 in [152]), which is the distribution that can sample the data
leading to the worst expected risk. Thus, equivalently, we can consider supP 1PT pP,Aq rP1p

pθq

as a surrogate of rP,Appθq, where T pP,Aq denotes the set of possible resulting distributions.
Following the empirical strength of techniques such as adversarial training [104], we intro-
duce an assumption relating the worst distribution of expected risk and the worst distribu-
tion of the empirical risk (namely, A5, in Appendix A1.1). Thus, the bound of our interest
(i.e., supP1PT pP,Aq rP1p

pθq) can be analogously analyzed through supP1PT pP,Aq prP1p
pθq.

Discussion of A5:
• Assumption A5 appears very strong, however, the successes of methods like adversarial

training [104] suggest that, in practice, A5 might be much weaker than it appears.
A6: With px,yq P pX,Yq, the worst case sample in terms of maximizing cross-entropy loss

and worst case sample in terms of maximizing classification error for model pθ follows:

@x,
yJfpx; pθq

infaPA yJfpapxq; pθq
ě exp

`

Ipgpfpx; pθqq ‰ gpfpx1; pθqqq
˘

(A.2)

where x1 stands for the worst case sample in terms of maximizing classification error, i.e.,

x1 “ arg min
x

yJgpfpx; pθqq

Also,

@x, | inf
aPA

yJfpapxq; pθq| ě 1 (A.3)

Intuitive understanding of A6:
• Although Assumption A6 appears complicated, it describes simple situations that we will

unveil in two scenarios:

If gpfpx; pθqq “ gpfpx1; pθqq, which means either the sample is misclassified by pθ or the
adversary is incompetent to find a worst case transformation that alters the prediction,
the RHS of Eq. A.2 is 1, thus Eq. A.2 always holds (because A has the identity map
as one of its elements).

If gpfpx; pθqq ‰ gpfpx1; pθqq, which means the adversary finds a transformation that
alters the prediction. In this case, A2 intuitively states that the A is reasonably rich
and the adversary is reasonably powerful to create a gap of the probability for the
correct class between the original sample and the transformed sample. The ratio is
described as the ratio of the prediction confidence from the original sample over the
prediction confidence from the transformed sample is greater than e.

Validation of A6:
• We inspect Assumption A6 by directly calculating the frequencies out of all the samples

when it holds. Given a vanilla model (Base), we notice that over 74% samples out of
50000 samples fit this assumption. Thus, we consider this assumption reasonable enough
to use.
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A1.2 Proof of Theoretical Results
Lemma A1.1. With Assumptions A1, A4, and A5, with probability at least 1´ δ, we have

rP,Appθq ď
1

n

ÿ

px,yq„P

sup
aPA

Ipgpfpapxq; pθqq ‰ yq ` φp|Θ|, n, δq

Proof. With Assumption A5, we simply say

arg max
P1PT pP,Aq

rP1ppθq “ arg max
P1PT pP,Aq

prP1ppθq “ Pw

we can simply analyze the expected risk following the standard classical techniques since both
expected risk and empirical risk are studied over distribution Pw.

Now we only need to make sure the classical analyses (as discussed in A4) are still valid over
distribution Pw:

• when A4 is “Θ is finite, lp¨, ¨q is a zero-one loss, samples are i.i.d”, φp|Θ|, n, δq “

c

logp|Θ|q ` logp1{δq

2n
.

The proof of this result uses Hoeffding’s inequality, which only requires independence of
random variables. One can refer to Section 3.6 in [97] for the detailed proof.

• when A4 is “samples are i.i.d”, φp|Θ|, n, δq “ 2RpLq `
c

log 1{δ

2n
. The proof of this

result relies on McDiarmid’s inequality, which also only requires independence of random
variables. One can refer to Section 3.8 in [97] for the detailed proof.

Assumption A1 guarantees the samples from distribution Pw are still independent, thus the
generic term holds for at least these two concrete examples, thus the claim is proved.

Proposition A1.2. With A2, for any a P A, we have

W1ppQx,pθ,
pQapxq,pθq “

|pX,Yq|
ÿ

i

||fpxi; pθq ´ fpapxiq; pθq||1,

where pQx,pθ denotes the empirical distribution of fpapxq; pθq for px,yq P pX,Yq.

Proof. We leverage the order statistics representation of Wasserstein metric over empirical dis-
tributions (e.g., see Section 4 in [11])

W1ppQx,pθ,
pQapxq,pθqq “ inf

σ

|pX,Yq|
ÿ

i

||fpxi; pθq ´ fpapxσpiqq, pθq||1

where σ stands for a permutation of the index, thus the infimum is taken over all possible permu-
tations. With Assumption A2, when dep¨, ¨q in A2 chosen to be `1 norm, we have:

||fpxi; pθq ´ fpapxiq; pθq||1 ď min
j‰i

||fpxi; pθq ´ fpapxjq, pθq||1

Thus, the infimum is taken when σ is the natural order of the samples, which leads to the claim.
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Theorem. With Assumptions A1, A2, A4, A5, and A6, with probability at least 1´ δ, we have

rP,Appθq ď prPppθq `
ÿ

i

||fpxi; pθq ´ fpx
1
i;
pθq||1 ` φp|Θ|, n, δq (A.4)

and x1 “ apxq, where a “ arg maxaPA yJfpapxq; pθq.

Proof. First of all, in the context of multiclass classification, where gpfpx, ; θqq predicts a label
with one-hot representation, and y is also represented with one-hot representation, we can have
the empirical risk written as:

prPppθq “ 1´
1

n

ÿ

px,yq„P

yJgpfpx; pθqq

Thus,

sup
P1PT pP,Aq

prP1ppθq “ prPppθq ` sup
P1PT pP,Aq

prP1ppθq ´ prPppθq

“ prPppθq `
1

n
sup

P1PT pP,Aq

`

ÿ

px,yq„P

yJgpfpx; pθqq ´
ÿ

px,yq„P1

yJgpfpx; pθqq
˘

With A6, we can continue with:

sup
P1PT pP,Aq

prP1ppθq ď prPppθq `
1

n
sup

P1PT pP,Aq

`

ÿ

px,yq„P

yJ logpfpx; pθqq ´
ÿ

px,yq„P1

yJ logpfpx; pθqq
˘

If we use ep¨q “ ´yJ logp¨q to replace the cross-entropy loss, we simply have:

sup
P1PT pP,Aq

prP1ppθq ď prPppθq `
1

n
sup

P1PT pP,Aq

`

ÿ

px,yq„P1

epfpx; pθqq ´
ÿ

px,yq„P

eppfpx; pθqq
˘

Since ep¨q is a Lipschitz function with constant ď 1 (because of A6, Eq.(A.3)) and together with
the dual representation of Wasserstein metric (See e.g., [156]), we have

sup
P1PT pP,Aq

prP1ppθq ď prPppθq `W1ppQx,pθ,
pQapxq,pθqq

where x1 “ apxq, where a “ arg maxaPA yJfpapxq; pθq; pQx,pθ denotes the empirical distribution

of fpapxq; pθq for px,yq P pX,Yq. Note that rP,Appθq, by definition, is a shorthand notation for
supP1PT pP,Aq rP1p

pθq.
Further, we can use the help of Proposition B.2 to replace Wassertein metric with `1 distance.

Finally, we can conclude the proof with Assumption A5 as how we did in the proof of Lemma
B.1.

Lemma. With Assumptions A1-A6, assuming there is a a1pq P A where prPa1 p
pθq “ 1

2

`

prPa` p
pθq`

prPa´ p
pθq
˘

, with probability at least 1´ δ, we have:

rP,Appθq ď
1

2

`

prPa` p
pθq ` prPa´ p

pθq
˘

`
ÿ

i

||fpa`pxiq; pθq ´ fpa
´
px1q; pθq||1 ` φp|Θ|, n, δq (A.5)
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Proof. We can continue with

sup
P1PT pP,Aq

prP1ppθq ď prPppθq `W1ppQx,pθ,
pQapxq,pθqq,

where pQx,pθ denotes the empirical distribution of fpapxq; pθq for px,yq P pX,Yq. from the proof
of Theorem 5.2. With the help of Assumption A3, we have:

dxpfpa
`
pxq, pθq, fpa´pxq, pθqq ě dxpfpx, pθq, fpx

1, pθqq

When dxp¨, ¨q is chosen as Wasserstein-1 metric, we have:

sup
P1PT pP,Aq

prP1ppθq ď prPppθq `W1ppQa`pxq,pθ,
pQa´pxq,pθqq

Further, as the LHS is the worst case risk generated by the transformation functions within A,
and prPppθq is independent of the termW1ppQa`pxq,pθ,

pQa´pxq,pθqq, WLOG, we can replace prPppθqwith
the risk of an arbitrary distribution generated by the transformation function in A. If we choose
to use prPa1 p

pθq “ 1
2

`

prPa` p
pθq ` prPa´ p

pθq
˘

, we can conclude the proof with help from Proposition
B.2 and Assumption A5 as how we did in the proof of Theorem 5.2.
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Table A3: Details of Rotation Experiment
ResNet ResNet-GC ResNet-ST ResNet-ETN

Base RVA RWA Base RVA RWA Base RVA RWA Base RVA RWA
0 0.836 0.8487 0.8708 0.7645 0.8537 0.8578 0.7805 0.7472 0.7787 0.8242 0.8537 0.8562
15 0.6938 0.7904 0.8871 0.5596 0.793 0.8538 0.7374 0.7361 0.7706 0.7151 0.8199 0.8538
30 0.4557 0.7455 0.8869 0.3558 0.7485 0.8275 0.6519 0.7362 0.7715 0.4407 0.8381 0.8467
45 0.3281 0.8005 0.887 0.246 0.7618 0.7482 0.4953 0.7375 0.7727 0.2839 0.8401 0.835
60 0.2578 0.8282 0.8818 0.1963 0.8251 0.8191 0.3974 0.7374 0.7663 0.2297 0.845 0.8395
75 0.2366 0.7236 0.8101 0.1878 0.7976 0.6715 0.3177 0.7342 0.7374 0.2484 0.8051 0.5985
90 0.2939 0.5615 0.5742 0.1966 0.6589 0.617 0.3044 0.7235 0.6721 0.2923 0.4452 0.3494

105 0.2027 0.3545 0.4242 0.1717 0.4483 0.5748 0.2698 0.7223 0.649 0.2225 0.4245 0.3059
120 0.1758 0.2992 0.3885 0.1651 0.4162 0.5996 0.2677 0.7169 0.6663 0.1877 0.3868 0.3017
135 0.1748 0.3115 0.3708 0.1683 0.3854 0.4152 0.2655 0.7145 0.6585 0.1907 0.4029 0.34
150 0.181 0.3347 0.3524 0.184 0.3777 0.3631 0.2813 0.7097 0.6266 0.2082 0.4012 0.2992
165 0.2283 0.325 0.3366 0.2091 0.3604 0.3174 0.3091 0.7054 0.5611 0.2585 0.3618 0.2953
180 0.3053 0.3485 0.3795 0.2673 0.3669 0.3183 0.3295 0.7176 0.534 0.3343 0.3796 0.3577
195 0.2607 0.3089 0.3781 0.2265 0.3221 0.3256 0.2985 0.705 0.5177 0.2663 0.3543 0.3445
210 0.2298 0.3109 0.3806 0.1963 0.3258 0.3468 0.2803 0.7003 0.5173 0.2225 0.362 0.3447
225 0.2218 0.3342 0.3723 0.1788 0.3316 0.3315 0.2687 0.6965 0.5151 0.1948 0.3622 0.3468
240 0.2042 0.3519 0.3729 0.1755 0.3613 0.3808 0.2558 0.7033 0.5235 0.1894 0.3597 0.3332
255 0.2023 0.3335 0.3631 0.194 0.36 0.3964 0.2663 0.7147 0.5597 0.2206 0.3706 0.2964
270 0.2683 0.3507 0.381 0.2297 0.4607 0.4411 0.3202 0.7318 0.6356 0.291 0.4945 0.3372
285 0.2275 0.3046 0.389 0.2056 0.5844 0.4521 0.335 0.7245 0.6339 0.2527 0.4255 0.3249
300 0.2196 0.3198 0.4012 0.2117 0.6469 0.4973 0.3686 0.7232 0.6443 0.2393 0.4292 0.3315
315 0.2573 0.3901 0.4251 0.2427 0.5596 0.4816 0.4211 0.7303 0.6412 0.2746 0.4588 0.3259
330 0.3873 0.5489 0.4852 0.3429 0.5755 0.7211 0.5552 0.7299 0.6592 0.4215 0.5057 0.3534
345 0.6502 0.717 0.6765 0.5463 0.74 0.8417 0.7193 0.7379 0.7215 0.7055 0.7023 0.6528

A1.3 Additional Results for Comparisons with Advanced Methods

We have also conducted two full ImageNet level experiments. However, due to the limitation of
resources, we cannot tune the models substantially. Our current trial suggest that our techniques
can improve the vanilla model to compete with SOTA models, limited by our resources, we can-
not do wide-range hyperparameters search to outperform them. Also, considering the fact that
many of these methods are significantly more complicated than us and also uses data augmen-
tation specially designed for the tasks, we consider our experiments a success indication of the
empirical strength of our methods.

Texture-perturbed ImageNet classification We also test the performance on the image clas-
sification over multiple perturbations. We train the model over standard ImageNet training set
and test the model with ImageNet-C data [59], which is a perturbed version of ImageNet by
corrupting the original ImageNet validation set with a collection of noises. Following the stan-
dard, the reported performance is mCE, which is the smaller the better. We compare with several
methods tested on this dataset, including Patch Uniform (PU) [102], AutoAugment (AA) [23],
MaxBlur pool (MBP) [183], Stylized ImageNet (SIN) [59], AugMix (AM) [62], AugMix w.
SIN (AMS) [62]. We use the performance reported in [62]. Again, our augmention only uses
the generic texture with perturbation (the A in our texture synthetic experiments with radius
changed to 20, 25, 30, 35, 40). The results are reported in Table A4, which shows that our generic
method outperform the current SOTA methods after a continued finetuning process with reducing
learning rates.

Cross-domain ImageNet-Sketch Classification We also compare to the methods used for
cross-domain evaluation. We follow the set-up advocated by [163] for domain-agnostic cross-
domain prediction, which is training the model on one or multiple domains without domain
identifiers and test the model on an unseen domain. We use the most challenging setup in
this scenario: train the models with standard ImageNet training data, and test the model over
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Clean Noise Blur Weather Digital mCEGauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Base 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
RVA 23.6 78 78 79 74 87 79 76 78 75 69 58 68 85 75 75 75.6
RWA 22.4 61 63 63 68 75 65 66 70 69 64 56 55 70 61 63 64.6
SU 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
AA 22.8 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7

MBP 23 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AM 22.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4

AMS 25.2 61 62 61 69 77 63 72 66 68 63 59 52 74 60 67 64.9

Table A4: Comparison to advanced models over ImageNet-C data. Performance reported (mCE)
follows the standard in ImageNet-C data: mCE is the smaller the better.

Base InfoDrop HEX PAR VA RVA RSC VWA RWA
Top-1 0.1204 0.1224 0.1292 0.1306 0.1362 0.1405 0.1612 0.1432 0.1486
Top-5 0.2408 0.256 0.2564 0.2627 0.2715 0.2793 0.3078 0.2846 0.2933

Table A5: Comparison to advanced cross-domain image classification models, over ImageNet-
Sketch dataset. We report top-1 and top-5 accuracy following standards on ImageNet related
experiments.

ImageNet-Sketch data [162], which is a collection of sketches following the structure ImageNet
validation set. We compare with previous methods with reported performance on this dataset,
such as InfoDrop [1], HEX [163], PAR [162], RSC [69] and report the performances in Ta-
ble A5. Notice that, our data augmentation also follows the requirement that the characteristics
of the test domain cannot be utilized during training. Thus, we only augment the samples with
a generic augmentation set (A of “contrast” in synthetic experiments). The results again support
the usage of data augmentation and consistency loss.

A2 Proofs for Chapter 4.2: Generalization Bound of Learn-
ing Robust Models

A2.1 Lemma A3.1 and Proof

Lemma A2.1. With sample px,yq and two labeling functions f1pxq “ f2pxq “ y, for an esti-
mated θ P Θ, if θpxq “ y, then with A3 , we have

dpθ, f1,xq “ 1 ùñ rpθ,Apf2,xqq “ 1. (A.6)

Proof. If θpxq “ y and dpθ, f1,xq “ 1, according to A3, we have dpθ, f2,xq “ 0.
We prove this by contradiction.
If the conclusion does not hold, rpθ,Apf2,xqq “ 0, which means

max
xApf2,xqPXApf2,xq

|θpxq ´ y| “ 0 (A.7)
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Together with dpθ, f2,xq “ 0, which means

max
zPX :zApf2,xq“xApf2,xq

|θpzq ´ y| “ 0, (A.8)

we will have

max
xPX

|θpxq ´ y| “ 0, (A.9)

which is θpxq “ y for any x P P.
This contradicts with the premises in A3 (θ is not a constant function).

A2.2 Theorem 3.1 and Proof

Theorem. With Assumptions A1-A3, with probability as least 1´ δ, we have

εPtpθq ď pεPspθq ` cpθq ` φp|Θ|, n, δq (A.10)

where cpθq “
1

n

ř

px,yqPpX,YqPs
Irθpxq “ ysrpθ,Apfm,xqq.

Proof.

pεPspθq “
1

n

ÿ

px,yqPpX,YqPs

|θpxq ´ fpxq| (A.11)

“1´
1

n

ÿ

px,yqPpX,YqPs

`

Irθpxq “ fpxqs
˘

(A.12)

“1´
1

n

ÿ

px,yqPpX,YqPs

`

Irθpxq “ fpxqsIrdpθ, fh,xq “ 0s ` Irθpxq “ fpxqsIrdpθ, fh,xq “ 1s
˘

(A.13)

“1´
1

n

ÿ

px,yqPpX,YqPs

`

Irθpxq “ fpxqsIrdpθ, fh,xq “ 0s
˘

´
1

n

ÿ

px,yqPpX,YqPs

Irθpxq “ fpxqsIrdpθ, fh,xq “ 1s

(A.14)

ěpεdpθq ´
1

n

ÿ

px,yqPpX,YqPs

Irθpxq “ fpxqsrpθ,Apfm,xqq, (A.15)

where the last line used Lemma A2.1.
Thus, we have

pεdpθq ď pεpθq `
1

n

ÿ

px,yqPpX,YqPs

Irθpxq “ fpxqsrpθ,Apfm,xqq (A.16)
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where

pεdpθq “ 1´
1

n

ÿ

px,yqPpX,YqPs

`

Irθpxq “ fpxqsIrdpθ, fh,xq “ 0s
˘

, (A.17)

which describes the correctly predicted terms that θ functions the same as fh and all the wrongly
predicted terms. Therefore, conventional generalization analysis through uniform convergence
applies, and we have

εPtpθq ď pεdpθq ` φp|Θ|, n, δq (A.18)

Thus, we have:

εPtpθq ď pεPspθq `
1

n

ÿ

px,yqPpX,YqPs

Irθpxq “ ysrpθ,Apfm,xqq ` φp|Θ|, n, δq (A.19)

A2.3 Theorem 3.2 and Proof

Theorem. With Assumptions A2-A4, and if 1´ fh P Θ, we have

cpθq ď DΘpPs,Ptq `
1

n

ÿ

px,yqPpX,YqPt

Irθpxq “ ysrpθ,Apfm,xqq (A.20)

where cpθq “
1

n

ř

px,yqPpX,YqPs
Irθpxq “ ysrpθ,Apfm,xqq andDΘpPs,Ptq is defined as in (4.8).

Proof. By definition, gpxq P Θ∆Θ ðñ gpxq “ θpxq ‘ θ1pxq for some θ, θ1 P Θ, together with
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Lemma 2 and Lemma 3 of [9], we have

DΘpPs,Ptq “
1

n
max
θ,θ1PΘ

ˇ

ˇ

ÿ

px,yqPpX,YqPs

|θpxq ´ θ1pxq| ´
ÿ

px,yqPpX,YqPt

|θpxq ´ θ1pxq|
ˇ

ˇ (A.21)

ě
1

n

ˇ

ˇ

ÿ

px,yqPpX,YqPs

|θpxq ´ fzpxq| ´
ÿ

px,yqPpX,YqPt

|θpxq ´ fzpxq|
ˇ

ˇ (A.22)

“
1

n

ˇ

ˇ

ÿ

px,yqPpX,YqPs

Irθpxq “ ys ´
ÿ

px,yqPpX,YqPt

Irθpxq “ ys
ˇ

ˇ (A.23)

“
1

n

ˇ

ˇ

ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrrpθ,Apfm,xqq “ 1s ´
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrrpθ,Apfm,xqq “ 1s

(A.24)

`
ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s ´
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s
ˇ

ˇ

(A.25)

“
1

n

ˇ

ˇ

ÿ

px,yqPpX,YqPs

Irθpxq “ ysrpθ,Apfm,xqq ´
ÿ

px,yqPpX,YqPt

Irθpxq “ ysrpθ,Apfm,xqq
ˇ

ˇ

(A.26)

ěcpθq ´
ÿ

px,yqPpX,YqPt

Irθpxq “ ysrpθ,Apfm,xqq (A.27)

First line: see Lemma 2 and Lemma 3 of [9].
Second line: if 1´ fh P Θ, and we use fz to denote 1´ fh.
Fifth line is a result of using that fact that
ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s “
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s

(A.28)

as a result of our assumptions. Now we present the details of this argument:
According to A3, if θpxq “ y, dpθ, fh,xqdpθ, fm,xq “ 0. Since rpθ,Apfm,xqq “ 0,

dpθ, fm,xq cannot be 0 unless θ is a constant mapping that maps every sample to 0 (which
will contradicts A3). Thus, we have dpθ, fh,xq “ 0.

Therefore, we can rewrite the left-hand term following
ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s “
ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrdpθ, fh,xq “ 0s

(A.29)

and similarly
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrrpθ,Apfm,xqq “ 0s “
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrdpθ, fh,xq “ 0s

(A.30)
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We recap the definition of dxp¨, ¨q, thus dpθ, fh,xq “ 0 means

dpθ, fh,xq “ max
zPX :zApf,xq“xApfh,xq

|θpzq ´ fhpzq| “ 0 (A.31)

Therefore dpθ, fh,xq “ 0 implies Ipθpxq “ yq, and

|θpzq ´ fhpzq| “ 0 @ zApfh,xq “ xApfh,xq (A.32)

Therefore, we can continue to rewrite the left-hand term following
ÿ

px,yqPpX,YqPs

Irθpxq “ ysIrdpθ, fh,xq “ 0s “
ÿ

px,yqPpX,YqPs

Irθpzq ´ fhpzqs “
ÿ

px,yqPpX,YqPs

Irθpxq ´ fhpxqs

(A.33)

and similarly
ÿ

px,yqPpX,YqPt

Irθpxq “ ysIrdpθ, fh,xq “ 0s “
ÿ

px,yqPpX,YqPt

Irθpzq ´ fhpzqs (A.34)

where z denotes any z P X and zApfh,xq “ xApfh,xq.
Further, because of A4, we have

ÿ

px,yqPpX,YqPt

Irθpzq ´ fhpzqs “
ÿ

px,yqPpX,YqPs

Irθpxq ´ fhpxqs. (A.35)

Thus, we showed the (A.28) holds and conclude our proof.

A3 Proofs for Chapter 4.4: The Self-Challenging Algorithm

A3.1 Corollary 1
Proof. We first study the convergence part, where we consider a fixed hypothesis. We first
expand

|LppθRSCpSq;Sq ´ Lpθ‹RSCpSq;Dq|
“ |LppθRSCpSq;Sq ´ LppθRSCpSq;Dq ` LppθRSCpSq;Dq ´ Lpθ‹RSCpSq;Dq|
ď |LppθRSCpSq;Sq ´ Lpθ‹RSCpSq;Dq| ` |Lpθ‹RSCpSq;Dq ´ Lpθ‹RSCpSq;Dq|

We first consider the term |Lpθ‹RSCpSq;Sq ´ Lpθ‹RSCpSq;Dq|, where we can expand

|Lpθ‹RSCpSq;Sq ´ Lpθ‹RSCpSq;Dq| ď 2|Lpθ‹RSCpSq;Sq ´ Lpθ‹RSCpSq;Oq|

because of Assumption A4.
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Also, because of Assumption A4, if samples in S are perturbed versions of samples in O,
then samples in O can also be seen as perturbed versions of samples in S, thus, Condition 4.21
can be directly re-written into:

|Lpθ‹RSCpSq;Sq ´ Lpθ‹RSCpSq;Oq| ď ξppq,

which directly leads us to the fact that |Lpθ‹RSCpSq;Sq ´ Lpθ‹RSCpSq;Dq| has the expectation 0
(A4) and bounded by r0, ξppqs.

For |LppθRSCpSq;Sq´Lpθ‹RSCpSq;Sq|, the strategy is relatively standard. We first consider the
convergence of a fixed hypothesis θRSC, then over n i.i.d samples, the empirical risk (pLpθRSCq)
will be bounded within r0, 1s with the expectation LpθRSCq.

Before we consider the uniform convergence step, we first put the two terms together and
apply the Hoeffding’s inequality. When the random variable is with expectation LpθRSCq and
bound r0, 1` 2ξppqs, we have:

Pp|pLpθRSC;Sq ´ LpθRSC;Dq| ě εq ď 2 expp´
2nε2

p2ξppq ` 1q2
q

Now, we consider the uniform convergence case, where we have:

Pp sup
θRSCPΘRSC

|pLpθRSC;Sq ´ LpθRSC;Dq| ě εq ď 2|ΘRSC| expp´
2nε2

p2ξppq ` 1q2
q

Rearranging these terms following standard tricks will lead to the conclusion.

A3.2 Corollary 2
Proof. Since we only concern with iteration t, we drop the subscript of zt and z̃t. We first
introduce another shorthand notation

hppθRSCpt` 1q, zq :“
ÿ

xzt,yy

lpfpz; pθRSCq;yq

We expand

ΓppθRSCpt` 1qq “|hppθRSCpt` 1q, zq ´ hppθRSCpt` 1q, z̃q|

“|hppθRSCpt` 1q, zq ´ hppθRSCptq, z̃q ` hppθRSCptq, z̃q ´ hppθRSCpt` 1q, z̃q|

“|hppθRSCpt` 1q, zq ´ hppθRSCptq, zq ` hppθRSCptq, zq ´ hppθRSCptq, z̃q

` hppθRSCptq, z̃q ´ hppθRSCpt` 1q, z̃q|

“|hppθRSCpt` 1q, zq ´ hppθRSCptq, zq ` hppθRSCptq, z̃q ´ hppθRSCpt` 1q, z̃q ` ΓppθRSCptqq|

Recall that, by the definition of RSC, we have:

pθRSCpt` 1q “ pθRSCptq ´
BhppθRSCptq, z̃q

BpθRSCptq
η “ pθRSCptq ´ g̃η
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We apply Taylor expansion over hppθRSCpt` 1q, ¨q with respect to pθRSCptq and have:

hppθRSCpt` 1q, ¨q “hppθRSCptq, ¨q `
BhppθRSCptq, ¨q

BpθRSCptq
ppθRSCpt` 1q ´ pθRSCptqq

`
1

2

B2hppθRSCptq, ¨q

B2pθRSCptq
||pθRSCpt` 1q ´ pθRSCptq||

2
2 ` σ

“hppθRSCptq, ¨q ´
BhppθRSCptq, ¨q

BpθRSCptq
g̃η `

1

2

B2hppθRSCptq, ¨q

B2pθRSCptq
||g̃η||22 ` σ,

where σ denotes the higher order terms.
Assumption A6 conveniently allows us to drop terms regarding η2 or higher orders, so we

have:

hppθRSCptq, ¨q ´ hppθRSCpt` 1q, ¨q “
BhppθRSCptq, ¨q

BpθRSCptq
g̃η (A.36)

Finally, when ¨ is replaced by z and z̃,
we have:

hppθRSCptq, z̃q ´ hppθRSCpt` 1q, z̃q “
BhppθRSCptq, z̃q

BpθRSCptq
g̃η “ ||g̃||22η

and

hppθRSCptq, zq ´ hppθRSCpt` 1q, zq “
1

γtppq

BhppθRSCptq, z̃q

BpθRSCptq
g̃η “

1

γtppq
||g̃||22η

We write these terms back and get

ΓppθRSCpt` 1qq “
ˇ

ˇp
1

γtppq
´ 1q||g̃||22η ` ΓppθRSCptqq

ˇ

ˇ

We can simply drop the absolute value sign because all these terms are greater than zero. Finally,
we rearrange these terms and prove the conclusion.
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[73] H. Jalalzai, P. Colombo, C. Clavel, É. Gaussier, G. Varni, E. Vignon, and A. Sabourin.
Heavy-tailed representations, text polarity classification & data augmentation. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 3.2.2

[74] J. Jeong, S. Lee, J. Kim, and N. Kwak. Consistency-based semi-supervised learning for
object detection. In Advances in Neural Information Processing Systems, pages 10758–
10767, 2019. 3.2.2

[75] J. Jo and Y. Bengio. Measuring the tendency of cnns to learn surface statistical regularities.
arXiv preprint arXiv:1711.11561, 2017. 2.2.5, 3.3.2, 4.1, 4.2.2

[76] H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing, 2018. 3.2.2

[77] D. Kaushik, E. Hovy, and Z. C. Lipton. Learning the difference that makes a difference
with counterfactually augmented data. In International Conference on Learning Repre-
sentations (ICLR), 2020. 3.2.1

[78] J. Kim, W. Choo, H. Jeong, and H. O. Song. Co-mixup: Saliency guided joint mixup with
supermodular diversity. In International Conference on Learning Representations, 2021.
3.2.2

[79] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 2.2.1, 2.2.2, 3.3.2

[80] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1885–1894. PMLR, 2017. 5.3

[81] R. Kondor, Z. Lin, and S. Trivedi. Clebsch–gordan nets: a fully fourier space spherical
convolutional neural network. In Advances in Neural Information Processing Systems,
pages 10117–10126, 2018. 3.2.6

[82] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009. 2.2.1

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012. 1.1, 2.2.2

[84] A. Kumagai and T. Iwata. Zero-shot domain adaptation without domain semantic descrip-
tors. arXiv preprint arXiv:1807.02927, 2018. 3.3.1

[85] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. In

98



Workshop of International Conference on Learning Representations, 2017. 2.2.3

[86] S.-C. Lam. Texture feature extraction using gray level gradient based co-occurence ma-
trices. In Systems, Man, and Cybernetics, 1996., IEEE International Conference on, vol-
ume 1, pages 267–271. IEEE, 1996. 3.3.2, 3.3.2

[87] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648, 2016. 4.4.1

[88] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 2.2.2, 3.2.2,
3.3.2

[89] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 1019–1030. Curran Associates, Inc., 2018. 3.3.3

[90] S. Lee, D. Kim, N. Kim, and S.-G. Jeong. Drop to adapt: Learning discriminative features
for unsupervised domain adaptation. In Proceedings of the IEEE International Conference
on Computer Vision, pages 91–100, 2019. 4.4.1, 4.4.3

[91] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE International Conference on Computer Vision,
pages 5542–5550, 2017. 3.3.2, 3.3.3, 3.4, 4.4.3, 4.4.3, 4.6

[92] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Learning to generalize: Meta-learning
for domain generalization. arXiv preprint arXiv:1710.03463, 2017. 3.3.1, 3.3.2, 3.3.3

[93] D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T. M. Hospedales. Episodic training for
domain generalization. arXiv preprint arXiv:1902.00113, 2019. 4.4.1, 4.4.3, 4.4.3

[94] H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature
learning. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR), 2018. 3.3.1, 4.4.1

[95] W. Li, Z. Xu, D. Xu, D. Dai, and L. Van Gool. Domain generalization and adaptation using
low rank exemplar svms. IEEE transactions on pattern analysis and machine intelligence,
2017. 3.3.1

[96] D. Liang, Z. Huang, and Z. C. Lipton. Learning noise-invariant representations for robust
speech recognition. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages
56–63. IEEE, 2018. 3.2.2

[97] P. Liang. Cs229t/stat231: Statistical learning theory (winter 2016), 2016. A1.2

[98] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-
nick. Microsoft coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014. 2.2.4

[99] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2117–2125, 2017. 2.2.4

[100] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection.

99



In Proceedings of the IEEE international conference on computer vision, pages 2980–
2988, 2017. 2.2.4

[101] Z. C. Lipton, Y.-X. Wang, and A. Smola. Detecting and correcting for label shift with
black box predictors. In International Conference on Machine Learning (ICML), 2018.
3.3.1

[102] R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk. Improving robustness without
sacrificing accuracy with patch gaussian augmentation. arXiv preprint arXiv:1906.02611,
2019. A1.3

[103] W.-S. Lu. Wavelet approaches to still image denoising. In Conference Record of
the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.
97CB36136), volume 2, pages 1705–1709. IEEE, 1997. 2.2.5

[104] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. 1.1, 2.2.2, 3.2.2, 3.2.5, 4.3.1, 5.2, A1.1

[105] R. K. Mahabadi, Y. Belinkov, and J. Henderson. End-to-end bias mitigation by modelling
biases in corpora. In D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault, editors, Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 8706–8716. Association for Computational
Linguistics, 2020. 1.1
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